
An Improved Hybrid Genetic Algorithm
with a New Local Search Procedure

WEN WAN1 and JEFFREY B. BIRCH2

1Department of Biostatistics, Virginia Commonwealth University, Richmond, VA
23298-0032

2Department of Statistics, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061-0439

A hybrid genetic algorithm (HGA) combines a genetic algorithm (GA) with an

individual learning procedure. One such learning procedure is a local search technique

(LS) used by the GA for refining global solutions. A HGA is also called a memetic

algorithm (MA), one of the most successful and popular heuristic search methods.

An important challenge of MAs is the trade-off between global and local searching as

it is the case that the cost of a LS can be rather high. This paper proposes a novel,

simplified, and efficient HGA with a new individual learning procedure that performs a

LS only when the best offspring (solution) in the offspring population is also the best in

the current parent population. Additionally, a new LS method is developed based on a

three-directional search (TD), which is derivative-free and self-adaptive. The new HGA

with two different LS methods (the TD and Neld-Mead simplex) is compared with a

traditional HGA. Two benchmark functions are employed to illustrate the improvement

of the proposed method with the new learning procedure. The results show that the

new HGA greatly reduces the number of function evaluations and converges much

faster to the global optimum than a traditional HGA. The TD local search method

is a good choice in helping to locate a global “mountain” (or “valley”) but may not

perform as well as the Nelder-Mead method in the final fine tuning toward the optimal

solution.

KEY WORDS: Genetic Algorithm (GA); Hybrid Genetic Algorithm (HGA); Memetic
Algorithm (MA); Local Search (LS); Nelder-Mead Simplex Algorithm.

——-
Dr. Wan is an assistant professor in the Department of Biostatistics at the Virginia Commonwealth
University. Her email address is wwan@vcu.edu.

Dr. Birch is a professor in the Department of Statistics at the Virginia Polytechnic Institute and State
University. His email address is jbbirch@vt.edu.

1 Introduction

Genetic algorithms (GAs) perform well as a global search technique, but they may often

take a relatively long time to converge to a global optimum (Davis, 1991; Goldberg and

Voessner, 1999; Lozano et al., 2004; Michalwicz, 1996). Local search (LS) techniques

have been incorporated into GAs to improve their performance through what could be

termed as learning. Such HGAs, often known as memetic algorithms (MAs), were first

introduced by Moscato (Moscato, 1989; Moscato, 1999) and are viewed as a form of

population-based genetic algorithms hybridized with an individual learning procedure

capable of fine tuning the global search.

MAs represent one of the recent growing areas of research in evolutionary compu-

tation (Ong et al, 2007). Any population-based metaheuristic search method (inspired

by Darwinian principles of natural selection) hybridized with any individual learning

(inspired by Dawkins’ notation “meme” (Dawkins, 1990) procedure belongs to the class

of MAs (Ong et al, 2007). In diverse contexts, MAs have also been referred to as hybrid

evolutionary algorithms, Baldwinian evolutionary algorithms, Lamarkian evolutionary

algorithms, cultural algorithms, or a genetic local search.

MAs have been successfully applied to hundreds of real-world problems in a wide

range of domains (Lozano et al., 2004). An important challenge of MAs is the trade-off

between global searching and local searching in terms of the time and computational

effort (Krasnogor and Smith, 2001; Lozano et al., 2004; Lozano et al., 2008; Hart et

al., 2004; El-Mihoub et al., 2006). That is, the yet unanswered questions are: when

to apply a LS technique; to which individuals in the GA (or any other evolutionary

algorithms) population should the LS technique be applied; and how much computa-

tional effort should be devoted to the LS technique. Recent literature presented several

1

non-classical MA methods that have been successful in reducing the total computa-

tional costs associated with a LS technique and that produce a profitable synergy from

the hybridization of the GA (or any other evolutionary algorithms) and LS methods

(Seront and Bersini, 2000; Lozano and Garcia-Martinez, 2010; Soak et al., 2006; Ong

et al, 2007; El-Mihoub et al., 2006). But none of the non-classical MAs are commonly

accepted (El-Mihoub et al., 2006). Additionally, some of these methods, such as the

method of Seront and Bersini (2000), may require the need for extra parameters.

Another challenge of MAs is the choice of successful LS techniques. Ning et al.

(2003) investigated the choice of LS techniques in HGAs and concluded that the choice

affects the search performance significantly and no single HGA always performs best

on a diverse set of benchmark test functions.

In this study, to reduce the computational effort of a LS method without any

extra parameters, a new HGA, called “a best-offspring HGA”, denoted by BOHGA, is

developed with a new individual learning procedure. That is, BOHGA performs a LS

only when the best offspring (solution) in the offspring population is also the best in the

current parent population. Additionally, a new LS method, a three-directional local

search (TD), is introduced which is derivative-free and self-adaptive. The main idea of

TD is that when the offspring performs better than both of its parents, three potential

directions are constructed from parents to one of their offspring with a certain step

length. We compare the new individual-learning HGA, BOHGA, with a traditional

HGA, each using two memes: our TD method and the Neld-Mead simplex method.

Both of these memes are derivative-free and suitable for real applications.

The remainder of this paper is organized as follows. We first briefly review the

traditional GA and HGA. Our new HGA is introduced with its new individual learning

procedure on when to perform the LS and on which offspring. We then present the

2

two memes respectively: one is the three-directional search (TD) and the other is the

Nelder-Mead simplex meme. Through two benchmark functions, we present results

for comparing the four HGAs for eight different settings of the GA operators and two

different stopping rules. Finally, we present conclusions, discussions, and suggestions

for future work.

2 The Genetic Algorithm and Hybrid Genetic Al-

gorithm

Genetic algorithms (GA) are iterative optimization procedures that repeatedly ap-

ply GA operators (such as selection, crossover and mutation) to a group of solutions

until some criterion of convergence has been satisfied. In a GA, a search point (so-

lution), a setting in the search space with k dimensions (k variables), is coded into

a string, x = [x1, ..., xk]
′, which is analogous to a chromosome in biological systems.

The string/chromosome is composed of k characters, x1, ..., xk, which are analogous

to the k genes. A set of multiple concurrent search points or a set of chromosomes

(or individuals) is called a population. Each iterative step where a new population

is obtained is called a generation. A GA hybridized with a local search procedure is

called a hybrid genetic algorithm (HGA).

A basic HGA procedure has the following steps.

1. Define an objective/fitness function, and set the GA operators (such as popu-
lation size, parent/offspring ratio, selection method, number of crossovers and
mutation rate).

2. Randomly generate the initial population as the current parent population.

3. Evaluate the objective function for each individual (chromosome or solution) in
the initial population.

3

4. Generate an offspring population by using GA operators (such as selection/mating,
crossover, and mutation).

5. Evaluate the objective function of each individual in the offspring population.

6. Perform a local search on each offspring, evaluating fitness of each new location,
and replace the offspring if there exists a locally improved solution.

7. Decide which individuals to include in the next population. This step is referred
to as “replacement” in that individuals from the current parent population are
“replaced” by a new population consisting of those individuals from the offspring
and/or the parent populations.

8. If a stopping criterion is satisfied, then the procedure is halted. Otherwise, go to
Step 4.

Without Step 6, a HGA is just a GA. Therefore, HGAs have all the properties

possessed by GAs. Like GAs, HGAs are a large family of algorithms that have the

same basic structure but differ from one another with respect to several strategies such

as stopping rules, operators which control the search process, and the local search

meme.

Based on previous experiences, in this study, we use a continuous HGA where

chromosomes are coded as continuous measurement variables. Suppose there are k

variables, i.e., there are k genes in each chromosome. We also make the following

assumptions. The (parent) population size is 2k and the offspring population size is

also 2k. The type of selection we utilize is random pairing. The blending crossover is

utilized and the number of crossover points depends on the number of dimensions of a

specific objective function. Random uniform mutation is utilized and the mutation rate

is set around or equal to 1/k. The type of replacement over both parent and offspring

populations is either ranking or tournament. For details on the setting of the GA

operators, see, for example, Goldberg (1989), Hamada et al. (2001), Mayer, Belward

and Burrage (2001), Francisco Ortiz et al. (2004) and Haupt and Haupt (2004).

4

There are many choices of local search memes (Ning et al., 2003), two of which are

used in this study. One meme is our newly developed “three-directional LS (TD),”

introduced in Section 4. A second meme is a popular LS meme, the Nelder-Mead

Simplex method, introduced in Section 5.

3 The Best-Offspring Hybrid Genetic Algorithm

As mentioned, our goal is to reduce the total costs associated with the LS. It has been

noticed that the LS may be repeatedly performed on the same “mountain” (for finding

a maximum) or “valley”(for finding a minimum) (Seront and Bersini, 2000). Therefore,

it is possible that after local searching, several chromosomes in a generation are very

close to each other, standing on the same top of a mountain or at the same bottom of a

valley. This may make it harder for the GA to maintain diversity in its population, an

important consideration in avoiding converging to a local optimum (Haupt and Haupt,

2004). Therefore, we propose the best-offspring HGA (BOHGA) where the LS is only

performed on the best offspring in the offspring population when it is also the best over

all chromosomes in the current parent population. When such a best offspring appears,

it is very likely that the best offspring is located on a new, higher mountain or on a

new lower valley. As will be soon demonstrated, this action tends to make BOHGA

more computationally efficient and helps to prevent converging to a local optimum.

The general procedure for BOHGA is the same as that of HGA, except that in the

ith generation we change Step 6 from the original HGA procedure into Steps 6.1-6.3 as

follows:

6.1. Is the best offspring in the offspring population also the best over the current
parent population?

6.2. If no, directly go to Step 7. That is, there is no LS in this generation.

5

6.3. If yes, then perform a LS on the best offspring considered as a starting point.
Find the best locally improved solution and replace the best offspring by it. Then
go to Step 7.

Actually, the BOHGA process is a special HGA process where a LS is not performed

on every new offspring but only on the offspring which are best in both the offspring

and the current parent populations. It is possible that not every generation of BOHGA

requires a LS. The BOHGA procedure, therefore, strongly agrees with the original idea

of MA, first introduced by Mascato in 1989. That is, initially let the GA explore a

wide search space. Once a potential search solution is found by a GA, a fine tuning

search will be conducted by a LS. Similar to both the GA and the HGA, the whole

process is iterated until some appropriate stopping rule is satisfied.

4 A Three-Directional (TD) Meme

The idea of the TD meme is to construct three potential directions for an offspring

whose performance is better than both of its parents in a generation. Thus, three

paths are declared without requiring the gradient. When an offspring shows improve-

ment from its parents in terms of the objective function, it may be possible to make

continuous improvements by moving along the directions/paths from its parents to

the offspring. That is, some search points are “collected” along the paths until no

further improvement can be found. These parents can be considered as two different

starting points. Both of their first steps from the two starting points go to the same

point: the offspring. So two directions are established: one direction is from one of the

parents to the offspring; the other is from the second of the parents to the offspring.

Both directions have obtained improvement, since the best offspring of interest is an

improvement over both its parents in terms of values of an objective function.

6

For example, consider a 2-dimensional (k = 2) problem along with the contours of

a response (or values of an objective function) as illustrated in Figure 1. The offspring

is denoted by O (expressed as xO = [xO1, ..., xOk]
′) and its parents are denoted by

P1 (xP1 = [xP11, ..., xP1k]
′) and P2 (xP2 = [xP21, ..., xP2k]

′). Obviously, there are two

directions: one is from P1 to O, expressed as δP1O = xO − xP1 = [δ11, δ12, ..., δ1k]
′ and

the other is from P2 to O, expressed as δP2O = xO − xP2 = [δ21, δ22, ..., δ2k]
′. We refer

to these two directions as the Parent 1 and Parent 2 directions.

[Insert Figure 1 about here.]

The third direction is the “common” direction, expressed as δ = [δ31, δ32, ..., δ3k]
′,

and based on the two parent directions. If δ1i and δ2i, for i = 1, ..., k, are both positive

(negative), then δ3i is positive (negative). That is, if both the parent directions are

in common, say, both positive (negative) along the Xi axis, then the third direction

is positive (negative) along the Xi axis. If δ1i and δ2i, , for i = 1, ..., k, are opposite

in direction, then δ3i is set to 0. That is, if the parent directions are not in common

on the Xi axis, then the third direction has no movement along the Xi axis. For more

details on the three directions and determining their moving distances for each moving

step, see the Appendix.

Figure 1 illustrates the three defined directions. The optimal point is denoted by

“Θ”. It is easy to see the two parents directions, expressed as δP1O = [δ11, δ12]
′ and

δP2O = [δ21, δ22]
′ respectively. The third direction δ = [δ31, δ32]

′. Obviously, δ31 > 0

since both δ11 > 0 and δ21 > 0. That is, the common direction in this case is positive

along the X1 axis. And δ32 = 0 since δ12 > 0 and δ22 < 0. That is, the common

direction has no relative movement along the the X2 axis.

Once the three directions are defined, starting at O, the TD method moves along

7

the three directions/paths, with some appropriate step length for each moving step

until no improvement is found in terms of an objective function. In Figure 1, the three

“stars” on the paths denote that the three best points found on each path and the

processes of moving along the paths will be stopped at their next points due to no

further improvement.

The choice of the size of step length d depends on the degree of bumpiness of the

surface of an objective function. We recommend that d should be in the physical range

of 0.01 to 1.0. If the surface is very bumpy relative to the region of the domain, then

the appropriate d should be relatively small. Otherwise, the appropriate d should be

relatively large to make HGA more efficient.

In our BOHGA procedure, the TD meme will only be performed for the best off-

spring in the offspring population that is also the best in the current parent population.

In our HGA procedure, the TD meme will be performed for those offspring whose per-

formances are better than both of their parents. Since not every offspring performs

better than either one of its parents, the TD meme will not be performed on every

offspring, which is the major difference from a traditional HGA.

5 Nelder-Mead Simplex Meme

The Nelder-Mead simplex method (Nelder and Mead, 1965) is a very popular derivative-

free method for finding a local minimum of a function. For a two-dimensional problem,

a simplex is a triangle, and the method is a pattern search that compares function val-

ues at the three vertices of a triangle. The worst vertex, where f(x, y) is largest, is

rejected and replaced with a new vertex. A new triangle is formed and the search is

continued. The process generates a sequence of triangles (which might have different

8

shapes), for which the function values at the vertices get smaller and smaller. The

size of the triangles is iteratively reduced and the coordinates of the minimum point

are found. The simplex algorithm can easily be extended to higher dimensions (see

Nelder and Mead (1965)). In many numerical tests, the simplex method succeeds in

obtaining a good reduction in the function value using a relatively small number of

function evaluations but it is easy to converge to a local optimum and is generally not

suitable for a highly non-linear objective function (Nelder and Mead, 1965).

Like the TD meme, the simplex meme requires a pre-specified step length param-

eter, representing a guess of the problem’s characteristic length scale. In this study,

the step length parameter is set to the same size as d for the fair comparison between

the simplex and TD memes. The C code for the simplex method is obtained from

Numerical Recipes in C (1992).

6 Examples: Benchmark Functions

Using two benchmark functions (the Rastrigin and the Schwefel functions), our goal

is to compare our BOHGA with a traditional HGA, with each procedure using one

of the two LS techniques: our new TD method or the simplex method. That is, we

compare the computational efficiency of four MAs: BOHGA with simplex (denoted

“BOHGAS”), BOHGA with TD (“BOHGATD”), HGA with simplex (“HGAS”), and

HGA with TD (“HGATD”) in computational efficiency for the two objective benchmark

functions. As mentioned, HGATD is different from the traditional HGA in that the TD

local search will be performed only for those offspring whose performances are better

than both their parents.

To make the comparisons comparable, the settings of the GA operators and the

9

starting random numbers that are used to generate the initial populations are the

same for each of the four MAs. In addition, since different starting random seeds

may result in a different number of function evaluations to find an optimum, a Monte

Carlo experiment is performed 100 times. That is, these four algorithms are run 100

times with 100 different starting random seeds. The four methods will be compared

by averaging the results over the 100 replications of the experiment.

A different setting of GA operators may result in a different number of function

evaluations. We choose 20 (k=20) as number of dimensions for both benchmark func-

tions. Therefore, as indicated in Section 2, both parent and offspring population sizes

are 40. The number of crossover points is 4 or 8. The mutation rate is 0.05 (= 1/k) or

0.06, a slightly larger value than 1/k. The type of replacement over both parent and

offspring populations is ranking or tournament. Therefore, there are a total of eight

combinations of crossover, mutation, and replacement type. That is, there are eight

GA settings used for comparisons.

Also two stopping rules are utilized for the experiment. The first stopping rule (rule

1) is that a method will be halted when a pre-set cut-off value (considered as a near-

global optimum) is achieved. The cut-off value represents the user’s best guess of the

optimal value of the objective function. Rule 1 can be used to compare the computa-

tional efficiencies of the four methods in finding a near-global optimum of an objective

function. The mean of a total number of function evaluations over 100 replications of

each MA will be used for comparisons. Since sometimes the global and near-global

optimal values are unknown, a second stopping rule (rule 2) is also considered. The

second stopping rule is that a method will be halted at a pre-selected number of gener-

ations. Under rule 2, the number of function evaluations it takes for the four methods

to converge to a global “mountain” or “valley” or even to a global optimum are com-

10

pared. That is, the rate of convergence to a near-global or global optimum is compared

across the four methods. Obviously, it is not relevant to compare the total number of

function evaluations required given a fixed total number of generations. Graphs will be

used to illustrate the comparisons of the four methods, by plotting mean best values of

the objective function over 100 replications at each generation found by each method

versus mean cumulative number of function evaluations at each generation by each

algorithm.

6.1 Comparisons for the Rastrigin’s function in 20-dimension

A generalized Rastrigin’s function is given by

f(x) =
k∑

i=1

(x2
i − 10 cos(2πxi) + 10), where− 5.12 ≤ xi ≤ 5.12, (1)

where k is the number of dimensions of the function (k = 20 in the study). Figure

2 shows its 1- and 2-dimensional surfaces. The surfaces are very bumpy in a narrow

range [-5.12, 5.12]. The goal is to find a minimal value and its corresponding location.

The minimum of this function is known as min(f(x)) = f(0, ..., 0) = 0. From the left

plot of Figure 2, a solution must be located on the global valley where the value of the

objective function is less than about 1.0.

The step length for the TD meme is set to 0.05, the same value as for the simplex

meme. The cut-off value used by rule 1, which is a near-global optimum, is set to 0.05.

The pre-selected number of generations used by stopping rule 2 is 5,000.

[Insert Figure 2 about here.]

Under stopping rule 1, Table 1 presents the mean number of function evaluations

as a summary of the 100 repetitions for the Rastrigin’s function in 20-dimensions for

11

comparisons of the four algorithms. Table 1 shows that the number of evaluations

required to obtain a value of the objective function within 0.05 of the true minimum.

BOHGAS consistently performs the best with much smaller mean numbers of function

evaluations than the BOHGATD and HGATD, which are quite competitive to each

other. In most of all the GA settings, BOHGAS has the smallest mean number of

function evaluations, followed by BOHGATD, HGATD, and HGAS. In addition, the

mean number of function evaluations greatly depends on the GA settings. The GA

using ranking replacement obviously performs much better than the GA with tourna-

ment replacement in all of the four methods indicating that tournament replacement

in MAs is not as efficient as ranking replacement. The mutation rate of 0.05 performs

better than the rate of 0.06 in most cases.

[Insert Table 1 about here.]

Under stopping rule 2 with 5,000 generations, Figure 3 shows the mean best mini-

mums of Rastrigin’s function versus mean cumulative number of function evaluations at

each generation over 100 replications by BOHGAS, HGAS, BOHGATD, and HGATD,

respectively. The GA parameters were set at the ranking replacement, four crossover

points, and 0.05 mutation rate. This figure illustrates that HGAS did not converge in

the 50,000 mean function evaluations but the other three methods did converge. In

the left plot of Figure 3, the BOHGAS procedure converged the fastest to the global

“valley”, followed closely be the BOHGAS and the HGATD methods. The right plot

in Figure 3, in an expanded scale, reveals that the BOHGAS procedure is actually the

first to converge to the cut-off of 0.05 at about 38,000 mean cumulative function eval-

uations, followed by the HGATD and the BOHGATD methods. It is clear that these

three methods have very similar behavior for this function.

12

[Insert Figure 3 about here.]

6.2 Comparisons for the Schwefel’s function in 20-dimension

A generalized Schwefel function from Schwefel (1995), is given by

k∑

i=1

−xi sin(
√
|xi|), where − 500 ≤ xi ≤ 500,

where k is the number of dimensions of the function. The minimum of the objective

function is given by min(f(x)) = f(420.9687, ..., 420.9687). The minimum is dependent

on k, the number of dimensions. When k = 20, the minimum value is -8,379.66. Figure

4 shows the 1- and 2-dimensional surfaces for the Schwefel function. In the left plot of

the figure, a solution must be located in the deepest valley, when value of the objective

function is less than about -300.0 in the 1-dimensional case.

Although the Schwefel function has a non-linear bumpy surface, its surface is rel-

atively smooth in a range [-500, 500] when compared to the surface of the Rastrigin’s

function. The step length for the TD meme is set to 0.5, the same as for the simplex

meme. The pre-selected number of generations used by stopping rule 1 is 1,000. The

cut-off near-global value is set to -8,379.0.

[Insert Figure 4 about here.]

Similar to Table 1, under stopping rule 1, Table 2 presents the mean total number

of function evaluations as a summary of the 100 repetitions for the Schwefel’s function

for comparison of the four algorithms. Table 2 shows that the numbers of evaluations

required to obtain a value of the objective function smaller than -8,379.0 by BOHGAS,

BOHGATD, and HGATD are all consistently much less than required by HGAS over all

13

settings. BOHGATD consistently performs the best with much smaller mean numbers

of function evaluations than the HGATD and BOHGAS, which are quite competitive

to each other. Over all the GA settings, BOHGATD has the smallest mean numbers

of function evaluations, followed by BOHGAS, then HGATD, and finally HGAS. In

addition, the GA setting with ranking replacement performs much better than with

tournament replacement in all of the four methods. This again indicates that tour-

nament replacement in MAs is not as efficient as ranking replacement. The mutation

rate of 0.05 performs better than the rate of 0.06 in most cases.

[Insert Table 2 about here.]

Similar to Figure 3, under stopping rule 2 with 1,000 generations, Figure 5 shows

the mean best minimum of the Schwefel’s function versus mean cumulative number of

function evaluations at each generation over 100 replications obtained by each MA in

the GA setting with the ranking replacement, four crossover points, and 0.05 mutation

rate. The left plot of Figure 5 shows that HGAS is the slowest to converge while

BOHGATD and BOHGAS have converged to a global “valley” at a similar yet faster

rate than HGATD. The right plot of Figure 5, in an expanded scale, shows in detail

that BOHGAS is the fastest to converge to the cut-off of -8379.0 at about 1,400 mean

cumulative function evaluations, followed by the BOHGATD, followed by the HGATD.

[Insert Figure 5 about here.]

7 Conclusion and Discussion

The importance of memetic algorithms in both real-world applications and academic

research has lead to the establishment of the series of international Workshops On

14

Memetic Algorithms (WOMA) and a dedicated book (Hart et al., 2004). From these

workshops, the following important questions are raised: 1) when to apply local im-

provement heuristics, 2) to which individuals in the evolutionary algorithms population

should local searches be applied, and 3) how much computational effort to devote to

local search algorithms. These questions remain unanswered, and more research effort

is required to gain the understanding and insights that may lead to guidelines for the

design of efficient and effective algorithms (Hart et al 2004).

This paper presents an improved and simplified MA, BOHGA, with a novel indi-

vidual learning procedure on when to perform a local search (or individual learning).

Unlike a classical MA/HGA procedure, where a local search is performed on each

offspring (solution), our new MA performs a local search when the best offspring is

also found to be the best among the current parent population. This new learning

procedure does not require any extra parameters.

We also develop a new meme, a three-directional local search, TD, which is derivative-

free and self-adaptive. The main idea of TD is that three potential directions are con-

structed from parents to their offspring with a certain step length, when the offspring

performs better than both of its parents.

The two well-known benchmark functions (the Rastrigin’s and the Schwefel’s func-

tions) with very different experimental ranges are used to compare BOHGAS, HGAS,

BOHGATD, and HGATD. The results under stopping rule 1 (that an algorithm is

halted when a near-global-optimum cut-off is achieved) match the results under stop-

ping rule 2 (that an algorithm is halted at a pre-selected number of generations) for

both functions. These results indicate that BOHGA with the new individual learning

procedure works much more efficiently than the traditional HGA, whichever meme is

chosen. HGATD, where the LS is performed only on those offspring that have an objec-

15

tive function values superior to both of their parents, is quite competitive to BOHGA.

These results also indicate that the TD meme is likely to help algorithms converge

faster to a global “valley” but does not appear to converge as quickly during the final

fine tuning stage as the simplex meme.

During the comparisons of the four MAs, we used eight different settings of GA

operators and found that ranking replacement performs uniformly better than tourna-

ment replacement for both functions. The mutation rate of 0.05 (which is 1/k, k = 20

in both of the benchmark functions) performed better than the rate of 0.06 in most

cases. The different number of crossover points had no obvious effect on the number

of function evaluations.

In summary, our new MGA with an individual learning procedure performs a LS

only when the best offspring is also the best within the parent population. Our new

MGA not only reduces the number of function evaluations required by the LS, but

also improves accuracy and efficiency in finding an optimal solution. The TD meme is

a good choice in helping finding a global “valley” or “peak” but may not perform as

well as the Nelder-Mead method at the final fine tuning. It is noted that our MA has

combined our new meme with a GA. We speculate that our new procedure would also

be effective when combined with other evolutionary algorithms.

Several issues remain for further study. For example, the three derivative-free di-

rections defined in the TD meme may not be optimal. Another issue concerns the

appropriate step length, once the directions are chosen. The size of a step length,

arbitrarily chosen by us, may affect the efficiency of the MAs. We found that the TD

may converge faster to a global “valley” or “peak” than the simplex meme, but may

be not as fast at finding an optimum at the fine tuning stage. In a future study, we

may combine the TD and simplex memes together, using TD first to reach the global

16

“valley” or “peak”, followed by the simplex meme to fine tune the solution. A further

issue involves the optimal settings of the GA operators. In this study, the three main

GA operators: the type of replacement, the number of crossover points, and the mu-

tation rate, have been studied. However, there may be some other operators affecting

the GA performance, such as the population size and the parent/offspring ratio. We

plan to study these issues in future work.

C++ code is available upon request from the authors.

REFERENCES

Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.

Goldberg, D.E., and Voessner, S. (1999). Optimizing global-local search hybrids. Ge-

netic and Evolutionary Computation GECCO-1999: Proceedings of the First In-

ternational Conference, 220-228.

Lozano, M., Herrera, F., Krasnogor, N., and Molina, D. (2004). Real-Coded Memetic

Algorithms with Crossover Hill-Climbing, Evolutionary Computation, 12(3):273-

302.

Michalwicz, Z. (1996). Genetic Algorithms + Data Structure= Evolution Programs, AI

Series, Springer- Verlag, New York, 3rd edition, 1996.

Moscato, P.A. (1989). On Evolution, Search, Optimization, Genetic Algorithms and

Martial Arts: Towards Memetic Algorithms. Caltech Concurrent Computation

Program (report 826).

17

Moscato, P.A. (1999). Memetic algorithms: a short introduction. In Corne, D., Dorigo,

M., and Glower, F., editors, New Ideas in Optimization, pages 219234, McGraw-

Hill, London.

Ong, Y.S., Krasnogor N., and Ishibuchi H. (2007). Guest editorial special issue on

memetic algorithms. IEEE Transctions On Systems, Man, and Cybernetics- Part

B: Cybernetics, 37(1):2-5.

Dawkins, R. (1990). The Selfish Gene. Oxford University Press, New York.

Krasnogor, N., and Smith, J.E. (2001). Emergence of Profitable Search Strategies

Based on a Simple Inheritance Mechanism. In Proceedings of the 2001 Interna-

tional Conference on Genetic and Evolutionary Computation, pp.432439, Morgan

Kaufmann, San Mateo, California.

Lozano, M., Herrera, F., and Cano, J.R. (2008). Replacement strategies to maintain

useful diversity insteady-state genetic algorithms.InfSci, 178:442133.

Hart, W.E., Krasnogor, N., and Smith, J.E. (2004). Editorial introduction special issue

on memetic algorithms. EvolComput, 12(3):vvi.

Seront, G., and Bersini, H. (2000). A new GA Local Search Hybrid for Continuous

Optimization Based on Multi-Level Single Linkage Clustering -in Proceedings of

GECCO 2000 - Las Vegas, Morgan Kaufmann Publishers, pp.90-95.

Lozanoa, M., and Garca-Martnezb, C. (2010). Hybrid metaheuristics with evolutionary

algorithms specializing in intensification and diversification: Overview and progress

report. Computers and Operations Research, 37:481-497.

El-Mihoub, T.A., Hopgood, A.A., Nolle, L., Battersby, A. (2006). Hybrid genetic

algorithms: a review. Engineering Letters, 13:2-11

18

Ning, Z., Ong, Y.S., Wong, K.W., Lim, M.H. (2003). Choice of memes in memetic

algorithm, In: Proc. of the 2nd International Conference on Computational Intel-

ligence, Robotics and Autonomous Systems.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning Reading, MA: Addison-Wesley.

Hamada, M., Martz, H.F., Reese, C.S., and Wilson, A.G. (2001). Statistical Practice:

Finding Near-Optimal Bayesian Experimental Designs via Genetic Algorithms.

The American Statistician, 55(3): 175-181.

Mayer, D.G., Belward, J.A., and Burrage, K. (2001). Robust Parameter Settings of

Evolutionary Algorithms for the Optimization of Agricultural Systems Models.

Agricultural Systems, 69:199-213.

Francisco, O. Jr., Simpson, J.R., Pignatiello, J.J., and Heredia-Langner, A. (2004).

A Genetic Algorithm Approach to Multiple-Response Optimization. Journal of

Quality Technology, 36(4):432-450.

Haupt, R.L. and Haupt, S.E. (2004). Practical Genetic Algorithms, John Wiley and

Sons, Inc., New York, NY.

Schwefel, H. P. (1995). Evolution and Optimum Seeking. John Wiley and Sons.

Nelder, J.A. and Mead, R. (1965). A simplex method for function minimization, Com-

puter Journal, 7:308-313.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. (1992). Numerical

Recipes in C, Cambridge, University Press.

APPENDIX: Mathematical Representation of the Three Directions

Local Search

19

We first introduce our notation. Parent 1 (P1) is given by xP1 = [xP11, ..., xP1k]
′,

where x is a vector of size k× 1 where k is the number of factors or the number of

dimensions. Similarly, Parent 2 (P2) is given by xP2 = [xP21, ..., xP2k]
′, and their

offspring (O) is expressed as xO = [xO1, ..., xOk]
′. The Parent 1 direction (from

P1 to O) is expressed as δP1O and the Parent 2 direction (from P2 to O) is as

δP2O. And the common direction is simply denoted as δ. The new points after the

first step along the three directions are expressed as xNew1 = [xNew11, ..., xNew1k]
′,

xNew2 = [xNew21, ..., xNew2k]
′, and xNew = [xNew1, ..., xNewk]

′, corresponding to Par-

ent 1, Parent 2, and their common direction respectively. The appropriate moving

distance on each axis in each moving step is expressed as d.

The parent 1 direction, which essentially is the different distances on each dimension

between points P1 and O, is expressed as

δP1O = xO − xP1 = [δ11, δ12, ..., δ1k]
′. (2)

Similarly, the parent 2 direction is expressed as

δP2O = xO − xP2 = [δ21, δ22, ..., δ2k]
′. (3)

To keep the same directions and move along the three paths, the moving distance

on each axis should be in constant proportion to each other, as the method of

steepest ascent/descent in response surface methodology (RSM). [In RSM, the

constant proportion on the ith dimension is defined as β̂i/β̂
∗, where the β̂i is the

ith estimated coefficient in the estimated first-order model and the β̂∗ is the largest

coefficient in magnitude among the k estimated coefficients, that is, β̂∗ = max
i=1,...,k

|β̂i|.
From this ratio, we can see that the proportion only depends on the βi, the ith

coefficient. The moving distance on the ith dimension is defined as (β̂i/β̂
∗) ∗ ρ,

20

where the ρ is an appropriate fixed distance. (For more details, please see Myers

and Montgomery (2002) in page 205-207.)]

In our GA application, the main idea in moving along the parent 1 path is the same

as that in the method of steepest ascent/descent. That is, to keep the constant

proportion in each dimension and move some appropriate fixed distance (which is

d in our case) along the parent 1 path. But the difference between our GA case

and RSM is the starting point. In the GA case, the starting points are P1 and

P2, not O. That is, the first step has already been completed. So the next moving

step starts at O. The largest moving distance in the first step is also not d, but

max
i=1,...,k

|δ1i|, where the δ1i is the moving distance on ith axis in Equation (A.1). Let

δ∗1 denote max
i=1,...,k

|δ1i|. In our study, if δ∗1 < d, then the moving distant in the next

step will be δ∗1. Otherwise, the distance in the next step will be d. The distance d

is obviously utilized to control the next moving distance.

The procedure of moving along the parent 1 direction is as following.

1. Calculate δP1O and then find δ∗1 = max
i=1,...,k

|δ1i|, the largest distance in the first

moving step.

2. If δ∗1 < d, then the next new position on the ith axis, i = 1, ..., k, is defined as
xNew1i = xOi+(δ1i/δ

∗
1)×d. Otherwise, the new position is xNew1i = xOi+ δ1i.

3. Check the region of the new point xNew1 = [xNew11, ..., xNew1k]
′. If xNew1i is

greater than its upper bound (which is the largest value in the ith domain),
then let it be the upper bound . Similarly, if it is less than its lower bound
(which is the lowest value in the ith domain), then let it be the lower bound.
(Usually, the upper bounds and lower bounds have been given through defining
the objective function.)

4. Evaluate the new point xNew1 by the objective function. If the new point
performs worse than the point xO, then the process of moving along the
parent 1 direction is halted. If the new point performs better than the xO,
then replace the point xNew1 by the next new point xNew1 + ΔN1O, where
ΔN1O = xNew1 − xO. (The ”N1O” means ”New point from Parent 1” to
”Offspring”.) Then return to Step 3.

The procedure for moving along the parent 2 direction is the same as that for the

21

parent 1 direction. However, the procedure for the common direction is slightly dif-

ferent from them, due to the different starting points. The starting points from the

parents directions are P1 or P2, while the starting point in the common direction

is O.

As mentioned earlier, building the common direction depends on whether both

parent directions are consistent or not. If they are consistent on ith axis (either

both positive or both negative), then move the same direction on the ith axis as

the parent directions. Otherwise, stay on that axis without any movement, due

to inconsistent directions. There is a special case: one of the moving distances on

an axis in the parent directions is zero and the other is nonzero. In this case, we

recommend movement in the same direction with the parent direction with nonzero

moving distance on the axis.

The procedure for movement along the common direction is as following.

1. Calculate δP1O and δP2O as Equations (2) and (3).

2. The next new point is defined as xNew = [xNew1, ..., xNewk]
′ along the path from

the common direction. To establish the common direction, three situations
on each axis/dimension are possible: (a) the δ1i × δ2i > 0 which means that
there is a common direction on the ith axis; (b) The δ1i×δ2i < 0 which means
that there is not a common direction on the ith axis; and (c) the δ1i × δ2i = 0
which means that at least one of δ1i and δ2i equals zero.

2.1. If the situation is (a), then the new point position on the ith axis is given
by xNewi = xOi + min(|δ1i|, |δ2i|, d) if both δ1i and δ2i are positive, or
xNewi = xOi −min(|δ1i|, |δ2i|, d) if both δ1i and δ2i are negative.

2.2. If the situation is (b), the new point position on the ith axis is given by
xNewi = xOi (no movement on the ith axis in this situation).

2.3. If the situation is (c), there are three subcases: (1) δ1i = 0 and δ2i �= 0;
(2) δ1i �= 0 and δ2i = 0; and (3) δ1i = 0 and δ2i = 0.

2.3.1. For case (1), if |δ2i| ≥ d, then xNewi = xOi + d (when δ2i > 0) or
xNewi = xOi − d (when δ2i < 0). Otherwise, xNewi = xOi + δ2i.

2.3.2. For case (2), similar to case (1), if |δ1i| ≥ d, then xNewi = xOi ± d.
Otherwise xNewi = xOi + δ1i.

2.3.3. For case (3), xNewi = xOi.

22

3. Check the range of the new point xNew.

4. Evaluate the point xNew. If the new point performs worse than the point xO,
then the process for moving along the common direction is stopped. If the
new point is better than xO, then replace the point xNew by the next new
point xNew +ΔNCO, where ΔNCO = xNew − xO. (The ”NCO” means ”New
from Common directions” and ”Offspring”). Return to Step 3.

23

Table 1: Comparisons of BOHGAS, HGAS, BOHGATD, and HGATD in terms of mean
number of evaluations under the eight settings of GA operators for the Rastrigin’s
function in 20-dimensions by stopping rule 1.

8 settings of GA operators Mean(evaluation)
Replacement crossover mutation BOHGAS HGAS BOHGATD HGATD

ranking 4 .05 29174 510436 41352 39420
.06 29688 549620 46608 40174

8 .05 33951 463661 30980 34720
.06 30052 510260 35135 33627

tournament 4 .05 62758 988761 132271 112930
.06 113071 1424709 258692 265373

8 .05 91747 1054834 214672 208569
.06 212320 1538475 765658 880024

overall average 75345 880095 190671 201855

24

Table 2: Comparisons of BOHGAS, HGAS, BOHGATD, and HGATD) in terms of
mean of the number of evaluations under the eight settings of GA operators for the
Schwefel’s function in 20-dimensions by stopping rule 1.

8 settings of GA operators Mean(evaluation)
Replacement crossover mutation BOHGAS HGAS BOHGATD HGATD

ranking 4 .05 13595 471668 26792 31243
.06 15049 471251 26972 31590

8 .05 13230 518101 20588 28070
.06 13792 546366 20207 29972

tournament 4 .05 28631 1059412 47893 132294
.06 37991 1404750 94763 281186

8 .05 37792 1408634 74805 221730
.06 57270 1824465 214563 815384

overall average 27169 963081 65823 196434

Figure 1: A contour plot of a 2-dimensional problem with the three directions indicated:
Parent 1 direction is from P1 to O; Parent 2 direction is from P2 to O; the common
direction is a horizontal dotted line, starting at O towards the positive values on the
X1 axis. The three “stars” represent the three points stopped on the three paths with
no further improvement.

25

-4 -2 2 4

10

20

30

40

-5
-2.5

0

2.5

5 -5

-2.5

0

2.5

5

0
20
40
60
80

-5
-2.5

0

2.5

Figure 2: Surface of Rastrigin’s function. Left: 1-dimension; right: 2-dimension.

0 10000 20000 30000 40000 50000

0
20

40
60

80
10

0

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f R
as

tr
ig

in
’s

 fu
nc

tio
n

0 10000 20000 30000 40000 50000

0
20

40
60

80
10

0

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f R
as

tr
ig

in
’s

 fu
nc

tio
n

0 10000 20000 30000 40000 50000

0
20

40
60

80
10

0

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f R
as

tr
ig

in
’s

 fu
nc

tio
n

0 10000 20000 30000 40000 50000

0
20

40
60

80
10

0

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f R
as

tr
ig

in
’s

 fu
nc

tio
n

BOHGA_S
HGA_S
BOHGA_TD
HGA_TD

true minimum = 0.0

25000 30000 35000 40000 45000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f R
as

tr
ig

in
’s

 fu
nc

tio
n

25000 30000 35000 40000 45000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f R
as

tr
ig

in
’s

 fu
nc

tio
n

25000 30000 35000 40000 45000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f R
as

tr
ig

in
’s

 fu
nc

tio
n

25000 30000 35000 40000 45000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f R
as

tr
ig

in
’s

 fu
nc

tio
n

BOHGA_S
HGA_S
BOHGA_TD
HGA_TD

true minimum = 0.0

cut−off (near−global) value = 0.05

Figure 3: Best minimums of Rastrigin’s function in 20-dimensions vs number of func-
tion evaluations at each generation averaged over 100 replications of the four MA
methods under the GA setting (ranking replacement, 4 crossover points, and 0.05 mu-
tation rate). Left: overall view in a full scale; right: highlighted view in an expanded
scale.

26

-400 -200 200 400

-400

-200

200

400

Figure 4: Surface of Schwefel’s function. Left: 1-dimension; right: 2-dimension.

0 10000 20000 30000 40000 50000

−
80

00
−

70
00

−
60

00
−

50
00

−
40

00
−

30
00

−
20

00

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f S
ch

w
ef

el
’s

 fu
nc

tio
n

0 10000 20000 30000 40000 50000

−
80

00
−

70
00

−
60

00
−

50
00

−
40

00
−

30
00

−
20

00

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f S
ch

w
ef

el
’s

 fu
nc

tio
n

0 10000 20000 30000 40000 50000

−
80

00
−

70
00

−
60

00
−

50
00

−
40

00
−

30
00

−
20

00

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f S
ch

w
ef

el
’s

 fu
nc

tio
n

0 10000 20000 30000 40000 50000

−
80

00
−

70
00

−
60

00
−

50
00

−
40

00
−

30
00

−
20

00

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f S
ch

w
ef

el
’s

 fu
nc

tio
n

BOHGA_S
HGA_S
BOHGA_TD
HGA_TD

true minimum = −8379.66

10000 15000 20000 25000 30000 35000

−
83

80
−

83
75

−
83

70
−

83
65

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f S
ch

w
ef

el
’s

 fu
nc

tio
n

10000 15000 20000 25000 30000 35000

−
83

80
−

83
75

−
83

70
−

83
65

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f S
ch

w
ef

el
’s

 fu
nc

tio
n

10000 15000 20000 25000 30000 35000

−
83

80
−

83
75

−
83

70
−

83
65

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f S
ch

w
ef

el
’s

 fu
nc

tio
n

10000 15000 20000 25000 30000 35000

−
83

80
−

83
75

−
83

70
−

83
65

Mean number of function evaluations

M
ea

n
m

in
im

um
 o

f S
ch

w
ef

el
’s

 fu
nc

tio
n

BOHGA_S
HGA_S
BOHGA_TD
HGA_TD

true minimum = −8379.66

cut−off (near−global) value = −8379.0

Figure 5: Best minimums of Schwefel’s function in 20-dimensions vs number of function
evaluations at each generation averaged over 100 replications of the four MA methods
under the GA setting (ranking replacement, four crossover points, and 0.05 mutation
rate). Left: overall view in a full scale; right: highlighted view in an expanded scale.

27

