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Abstract

In standard analyses of data well-modeled by a nonlinear mixed

model (NLMM), an aberrant observation, either within a cluster, or an

entire cluster itself, can greatly distort parameter estimates and subse-

quent standard errors. Consequently, inferences about the parameters

are misleading. This paper proposes an outlier robust method based

on linearization to estimate fixed effects parameters and variance com-

ponents in the NLMM. An example is given using the 4-parameter

logistic model and bioassay data, comparing the robust parameter

estimates to the nonrobust estimates given by SASR© .
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1 Introduction

Nonlinear mixed-effects models are very useful to analyze repeated measures
datasets and are used in variety of applications. Dealing with the longitudinal
data is an essential issue in agricultural, environmental, medical and biolog-
ical applications. Mixed-effects models in general are efficient and flexible
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to model the within-subject correlation often present in this type of appli-
cations. Several methodologies have already been introduced in the frame
work of linear and nonlinear mixed models to analyze such data ([1] and [2]).

Most researchers find that in the presence of the outliers, the Gaussian
Quasi-Maximum Likelihood estimators are very inaccurate and that a robust
procedure is needed. Mancini et.al. [3] and Muler and Yohia [4] proposed a
robust M-estimator that assigns a much lower weight to the outliers than the
Gaussian Maximum Likelihood estimators does. Pinheiro et al. [5] and Stau-
denmayer et al. [6] introduced robust estimation techniques in which both
random effects and errors have multivariate Student-t distributions, while
Rosa et al. [7] discussed Markov chain Monte Carlo (MCMC) implemen-
tations considering a Bayesian formulation. Nevertheless, few alternatives
have been studied for outlier accommodation in the context of nonlinear
mixed-effects models.

To date, Yeap and Davidian [8] is one of the very few references that
address this case. They proposed a two stage approach for robust estimation
in nonlinear mixed effects when outliers are present within and between in-
dividuals. Meza et. al. [9] presented an extension of a Gaussian nonlinear
mixed-effects model considering a class of heavy-tailed multivariate distribu-
tions for both random effects and residual errors. We introduce a one step
approach by utilizing a robust version of the linearized Gaussian likelihood
for the nonlinear mixed model, extending the linear mixed model case dis-
cussed in Gill [10]. The details are provided in section 2. One advantage
of our proposed method is that it can be easily computed using standard
statistical and mathematical functions found in computing software such as
SAS/IMLR© or R.

Nonlinear mixed model (NLMM) is given by

Yij = f(x′ij,β,ui) + εij (1)

where i = 1, ..., s and j = 1, ..., ni. In this model, Yij is the jth response
(or measurement) of the ith subject or cluster, s is the number of clusters,
ni is the number of responses in cluster i, x′ij is the regressor vector for the
jth response of subject i, β is the b × 1 vector of fixed effects parameters,
and ui is the vector of random effects for subject i, ui = (ui1, ui2, ..., uiq).
Here, qi is the number of random effects in cluster i (usually the same for all
i), and it is assumed that ui ∼ Nqi(0,Gi). The variance-covariance matrix
Gi is a matrix whose elements are the variance and covariance components

2



of the random effects, which we denote in vector notation as θG. A more
complete notation would be Gi(θG), but for parsimony we simply write Gi.
It is usually assumed that Gi is the same for all i. If the observations within
a cluster are stacked, we have the following model

Yi = f(Xi,β,ui) + εi (2)

where

Xi =


x′i1
x′i2
...

x′ini

 .
and εi = (εi1, εi2, ..., εini

)′. Assume that εi ∼ Nni
(0,Ri) are independent for

i = 1, . . . , s, where Ri is the matrix whose elements are the variances and
covariances of the error vector conditional on the random effects. Denote the
variances and covariances in vector notation as θR. If we stack the data for
each cluster, then we have the model

Y = f(X,β,u) + ε (3)

where

f(X,β,u) =


f(X1,β,u1)
f(X2,β,u2)

...
f(Xs,β,us)

 .
Let R = blockdiag(Ri) and G = blockdiag(Gi). Then ε ∼ NN(0,R) and
u ∼ Nq(0,G), where N =

∑
ni and q =

∑
qi.

The nonlinear mixed-effects model permits two types of correlation for the
measurements within a cluster. The first source of correlation within each
cluster comes from the random effects, while the second source of correlation
comes from the within-cluster variance-covariance matrix of errors R.

Different parametric methods can be utilized to estimate the parameters
in (3), but in this work we concentrate only on the maximum likelihood
(ML) and the restricted maximum likelihood (REML) methods. For an
introduction to some of the advantages and disadvantages of ML and REML
compared to the other commonly used estimation methods, see Harville [11].

The ML and REML estimators of parameters of (3) are dependent on
the marginal density of Yi, but since there is no closed form solution to (2),
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even if the random errors and random effects are assumed to be Gaussian
distributions, numerical methods are used to approximate the integral [12].
The two most common methods are the linearization and the integral approx-
imation methods, although these are not the only possible methods. Another
method is the two stage approach, also known as the individual estimates
method [1].

The aim of this paper is to propose a new estimation technique which is
robust to outliers. This paper is organized as follows. In Section 2 we discuss
robust estimation methods for the nonlinear mixed models. In Section 3 we
present inference about the parameters in the nonlinear mixed effects models.
A real application is given as example for the proposed technique in Section 4.
Section 5, includes simulation results for the proposed technique comparing
to the classical methods. Finally, some conclusions are given and possible
future work is discussed in Section 6.

2 Robust Estimation of the NLMM

2.1 Linearize the NLMM

There are three ways in which to estimate parameters in the NLMM. One
method, described by Davidian and Giltinan [13] is known as two-stage hi-
erarchical modeling, where within cluster variance component estimates are
obtained, whereupon between cluster estimates of the fixed effects are ob-
tained. This method relies heavily on the assumption that there are sufficient
within cluster observations to adequately estimate within cluster variability.
A second method to estimating NLMM parameters is through integral ap-
proximation. See Schabenberger and Pierce [14] for details. This method is
the most exact method, but can be computationally unfeasible. An alterna-
tive method is linearization.

Applying the first-order multivariate Taylor series approximation to f
gives

f(X,β,u) ≈ f(X, β̂, û) + D(β − β̂) + Z(u− û) (4)

where

D =
∂f(X,β,u)

∂β′

and

Z =
∂f(X,β,u)

∂u′
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evaluated at (β,u) = (β̂, û). Substituting (4) into (1) gives

Y ≈ f(X, β̂, û) + D(β − β̂) + Z(u− û) + ε

Y − f(X, β̂, û) + Dβ̂ + Zû ≈ Dβ + Zu + ε

(5)

Or
Ỹ ≈ Dβ + Zu + ε (6)

where Ỹ = Y−f(X, β̂, û)+Dβ̂+Zû, Ỹ
A∼ NN(Dβ,V), and V = ZGZ′+R.

Ỹ is known as the pseudo response and equation (5) is known as the pseudo
model because the actual observations Y are replaced with the pseudo re-
sponses Ỹ through the iterative estimation process. Since V is the variance-
covariance matrix of the pseudo responses, it depends on both θG and θR.
Denote θ = (θ′G,θ

′
R)′ as the p× 1 vector of variance and covariance param-

eters to be estimated. To accentuate the dependency of V on θ, we will
denote V = V(θ).

2.2 Robust Maximum Likelihood Estimation

2.2.1 Robust Likelihood

The log-likelihood function of the pseudo data, `(β,θ|ỹ), is given by

`(β,θ|ỹ) = −1

2
N log(2π)− 1

2
log |V(θ)|− 1

2
(ỹ−Dβ)′V(θ)−1(ỹ−Dβ). (7)

Since V(θ) is a symmetric positive definite matrix, V(θ)−1 is symmetric
positive definite, and we may write V(θ)−1 = V(θ)−1/2V(θ)−1/2 for the

symmetric square root matrix V(θ)−1/2. Further, define r = V(θ)−
1
2 (ỹ−Dβ)

as the standardized pseudo-residual vector. Using r, rewrite the likelihood
function (7) as

`(β,θ|ỹ) = −1

2
N log(2π)− 1

2
log |V(θ)| − 1

2
r′r. (8)

Note that r′r =
∑
r2i , where ri is the ith element of r.

Following the m-estimation theory expressed in Huber and Ronchetti [15],
the likelihood ` is robustified by replacing

∑
r2i with

∑
ρ(ri), where ρ(ri) is

a function of ri that increases much slower than r2i (see [16]) . For example, a
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Figure 1: The Tukey Bisquare ρ Function with Ct = 4 (solid) vs. squared
errors (dashed)

ρ function suggested by Andrews, et al. [17], called the Bisquare ρ function,
is

ρCt(ri) =

{
− (Ct)2

6
((1− ( ri

Ct
)2)3 − 1) |ri| ≤ Ct

(Ct)2

6
otherwise

,

where Ct is known as the tuning constant. For an example of this function,
see Figure 1.

The overall effect of replacing
∑
r2i with

∑
ρ(ri) in the likelihood function

is to limit or “down-weight” the influence that any one data point can exert
on the parameter estimates.

The first derivative of ρCt(ri) with respect to ri, denoted ψCt(ri) =
∂ρCt

∂ri
,

is given by

ψCt(ri) =

{
ri(1− ( ri

Ct
)2)2 |ri| ≤ Ct

0 otherwise
.

An alternative ρ function is the one suggested by Huber [18], called the
Huber ρ function, defined by

ρH(ri) =

{
1
2
r2i |ri| ≤ Ch

Ch|ri| − 1
2
(Ch)

2 otherwise
,

where Ch is the Huber tuning constant. The first derivative of ρH(ri) with
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respect to ri, denoted ψH(ri) = ∂ρH
∂ri

, is given by

ψH(ri) =

{
ri |ri| ≤ Ch

sign(ri)Ch otherwise
.

Subsequent derivations are made assuming the Huber ρ function.
Replacing r′r with

∑N
i=1 ρ(ri) in the likelihood function (8) gives the

robustified version of the likelihood, m, given by

m(β,θ|ỹ) = −k1
2
N log(2π)− k1

2
log |V(θ)| − 1

2

N∑
i=1

ρ(ri) (9)

where k1 = E(ψ(ri)ri) and the expectation is taken over the approximate dis-
tribution of ri, N(0, 1). The constant k1 is sometimes called the consistency
correction factor, and is needed in order to make the estimating equations
have zero expectation. Note that as the tuning constant approaches infinity,
the robustified likelihood approaches the original likelihood.

2.2.2 Solution for β

To find the solution for β, we take first derivatives of m with respect to β
and set the result equal to 0, resulting in the estimating equations given by

∂m

∂β
= D′V(θ)−1/2ψ(r) ≡ 0

where ψ(r) = (ψ(r1), ψ(r2), . . . , ψ(rN)), and ψ(ri) = ∂ρ(ri)
∂ri

.
Next, we take second derivatives in order to employ the multivariate

Newton-Raphson optimization method with Fisher Scoring. The second
derivative of m with respect to β is given by

Hββ′ =
∂2m

∂β∂β′
=

∂

∂β′
[
D′V(θ)−1/2ψ(r)

]
= −D′V(θ)−1/2Ψ(r)V(θ)−1/2D +

∂D′

∂β′
V(θ)−1/2ψ(r)(10)

where Ψ(r) = 〈∂ψ(ri)
∂ri
〉 = 〈∂

2ρ(ri)

∂r2i
〉. Now, the approximate Fisher Information

matrix is the expected Hessian matrix, given by

Iββ′ = E (−Hββ′) = D′V(θ)−1/2E (Ψ(r)) V(θ)−1/2D (11)

= k1D
′V(θ)−1D (12)
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since E (ψ(r)) ≈ 0.
The solution for β is found iteratively as

β(h+1) = β(h) +
[
I
(h)
ββ′

]−1 ∂m(h)

∂β
. (13)

2.2.3 Solution for θ

We calculate first derivatives of m, m(β,θ|ỹ), with respect to θi to obtain
the estimating equations for θi, given by

∂m

∂θi
= −k1

2
tr

[
V(θ)−1

∂V(θ)

∂θi

]
−ψ(r)′

∂V(θ)−1/2

∂θi
(ỹ −Dβ)

= −k1
2
tr

[
V(θ)−1

∂V(θ)

∂θi

]
+

1

2
ψ(r)′V(θ)−1

∂V(θ)

∂θi
r = 0.

(see appendix of Richardson and Welsh [19])
Element-wise second derivatives of m with respect to θj are given by,

∂2m

∂θj∂θi
=

∂

∂θj

[
∂m

∂θi

]
=

∂

∂θj

[
−k1

2
tr

(
V(θ)−1

∂V(θ)

∂θi

)
+

1

2
ψ(r)′V(θ)−1

∂V(θ)

∂θi
r

]
=

k1
2
tr

[
V(θ)−1

∂V(θ)

∂θj
V(θ)−1

∂V(θ)

∂θi

]
− 1

4
ψ′V(θ)−1

∂V(θ)

∂θj
V(θ)−1

∂V(θ)

∂θi
r

− 1

2
r′
∂V(θ)

∂θj
V(θ)−1

∂V(θ)

∂θi
V(θ)−1ψ

− 1

4
r′
∂V(θ)

∂θj
V(θ)−1Ψ(r)V(θ)−1

∂V(θ)

∂θi
r.

Note that
∂2V(θ)

∂θj∂θi
= 0 assuming the Huber ρ as noted above.

Now we collect first derivatives into a vector,

∂m

∂θ
=


∂m
∂θ1
∂m
∂θ2
...
∂m
∂θp
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and collect second derivatives into a matrix, Hθθ′ , as

Hθθ′ =
∂2m

∂θ∂θ′
=


∂2m
∂θ21

∂2m
∂θ1∂θ2

· · · ∂2m
∂θ1∂θp

∂2m
∂θ2∂θ1

∂2m
∂θ22

· · · ∂2m
∂θ2∂θp

...
...

. . .
...

∂2m
∂θp∂θ1

∂2m
∂θp∂θ2

· · · ∂2m
∂θ2p

 .

The approximate expected Hessian matrix for θ, denoted Iθθ′ , has ijth ele-
ment, Iθθ′ = {Iij}, is given by

Iij = E

{
− ∂2m

∂θi∂θj

}
=
k1
2
tr

[
V(θ)−1

∂V(θ)

∂θj
V(θ)−1

∂V(θ)

∂θi

]
. (14)

(See Appendix A for details.) We can find the iterative Fisher Scoring esti-
mates of θ by

θ(h+1) = θ(h) +
[
I
(h)
θθ′

]−1 ∂m(h)

∂θ
. (15)

2.2.4 Estimation of Both β and θ

It is important to note that the estimation of β and θ can be done sep-

arately, since E

[
∂2m

∂θi∂β

]
= 0. (See Appendix A for details.) Therefore,

the estimation algorithm is less complicated. At the h + 1 iteration of the
Newton-Raphson algorithm with Fisher Scoring,

β(h+1) = β(h) +
[
H

(h)
ββ′

]−1 ∂m(h)

∂β
.

After β(h+1) is obtained θ(h+1) is calculated using the updated parameter
vector β(h+1) and the vector θ(h) from the previous iteration. So,

θ(h+1) = θ(h) +
[
H

(h)
θθ′

]−1 ∂m(h)(θ(h+1),θ(h))

∂θ
.
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3 Inference for β

3.1 Wald Test

Now that we have obtained robust estimates we can test them using a Wald-
type test. The general form of the Wald test for testing the hypothesis
H0 : Cβ = d verses the alternative hypothesis H1 : Cβ 6= d is

W = [Cβ − d]′
[
C V ar(β̂)−1C′

]−1
[Cβ − d] .

The asymptotic distribution of β̂ is normal with mean of β and covariance
matrix

V ar
(
β̂
)

=
E [ψ2(ri)]

[E [ψ′(ri)]]
2D′V(θ)−1D, (16)

so W has an asymptotic χ2 distribution with degrees of freedom equal to
rank(C). Similarly, dividing W by rank(C) gives

F =
W

rank(C)

which has an asymptotic F -distribution with rank(C) numerator degrees of
freedom and denominator degrees of freedom equal to the number of obser-
vations minus the number of parameters being estimated.

3.2 T-tests on Individual Fixed-Effects Parameters

To test a hypothesis of the form H0 : βj = d verses the alternative hypothesis
H1 : βj 6= d, the Wald-type test above takes the form

F = (β̂j − d)2[
ˆ

V ar (β̂j)]
−1,

where
ˆ

V ar (β̂j) is the jth diagonal element of V ar(β̂). The F statistic has
an asymptotic F distribution with 1 numerator degree of freedom and de-
nominator degrees of freedom equal to the number of observations minus the
number of parameters being estimated. The associated t statistic is given by

t = sign(β̂)
√
F ,

which has an asymptotic t distribution with degrees of freedom equal to the
number of observations minus the number of parameters being estimated.
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Figure 2: The Dose-Response (BDR) data

4 Example

We illustrate the proposed methods using a real bioassay dose-response data
set (BDR) from a biopharmaceutical company, not disclosed here for confi-
dentiality reasons. The data is given in Table 1 in Appendix B. The data
consist of ten doses of a drug administered to ten subjects in each of three in-
dependent plates (clusters) chosen at random. A plot of the response against
the logarithm of the dose for each of the three plates is given in Figure 2.

It is obvious that there is an outlier in the first plate, second dose. A
robust estimation procedure is needed.

4.1 Standard Analysis of the BDR Data

The 4-Parameter Logistic model with one random effect is a common model
used to represent this data of this type. This model has the form

yij = A+
D − A

1 +
(xij
C

)B + εij, (17)

where yij is the jth measured response of the subject exposed to dose xij, A
is the upper asymptote parameter, D is the lower asymptote parameter, C
is the ED50 parameter (the dose required to elicit 50% response), and B is
the rate parameter. A plot of this function is given in Figure 3.
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Figure 3: The 4-Parameter Logistic Function

In order to account for the plate-to-plate variability, a random effect
for plate is added to the model. For the BDR data, the most appropriate
random effect to add to the model is the a random effect added to the upper
asymptote, A, as

yij = (A+ ai) +
D − (A+ ai)

1 +
(xij
C

)B + εij. (18)

See [20] for an example of using this model. Since the A, B, C, and D
parameters are fixed effects and the a parameter is a random effect, model
(18) is a nonlinear mixed model. The variance model contains one variance
component and independent errors with containt variance σ2. Using this
model and the BDR data the following parameter estimates were obtained,
as displayed in Table 1.

Note that the estimate of the A parameter is much higher than expected,
because of the undue influence of the outlier in the upper asymptote region.
Figure 4 gives a plot of the estimated population average (PA) curve given
by SASR© .

The PA curve systematically overestimates the mean response in the up-
per asymptote. Such bias can greatly distort subsequent inferences about
the quality of the drug and its physical properties.
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Table 1: SAS PROC NLMIXED Output for the BDR Data

Parameter Estimate Standard Error
A 5933.61 144.78
B -0.8953 0.07751
C 0.03295 0.003551
D 321.10 95.7084
σ2
a 29796 31299
σ2 60470 12377

Figure 4: PROC NLMIXED Population Average Curve Fit to Dose-Response
Data

4.2 Robust Analysis of the BDR Data

Using the Robust 4-Parameter Logistic Model with the Huber ρ function,
robust parameter estimates were obtained. Both robust and SASR© estimates
are shown in Table 2 for comparison.

Notice that the fixed effects parameter estimates and standard errors
change dramatically when the robust estimation is applied. A plot of the PA
curves for both the robust procedure and for SASR© is given in Figure 5.

The robust parameter estimates do not systematic over-estimate the PA
near the upper asymptote. It is clear that the outlier has not influenced the
estimates of the robust model as greatly as the standard estimates.
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Table 2: Comparison of SAS PROC NLMIXED and Robust NLMM Output
for the BDR Data

Robust PROC NLMIXED
Parameter Estimate Standard Error Estimate Standard Error

A 5696.72 34.459 5933.61 144.78
B -0.9612 0.0285 -0.8953 0.07751
C 0.0368 0.0012 0.03295 0.003551
D 342.43 30.6746 321.10 95.7084
σ2
a 634.789 1840.14 29,796 31,299
σ2 6456.56 1776.838 60,470 12,377

5 Simulation Results

A Monte Carlo simulation study was conducted to examine the asymptotic
distribution of the robust fixed effects parameters and their associated stan-
dard errors when an outlier is present. A simulation with 1000 data sets
was generated using the mean-shift outlier model applied to model (18) with
three independent clusters. The outlier was present at the second dose of
one of the plates (clusters) for each data set, with an average of 1200 units
greater than the PA curve at that dose. The doses used are the same doses
as in the BDR data set. Population parameters are as given in Table 3.

Table 3: Population Parameters for Simulation Study

A B C D σ2
a σ2

5500 -0.95 0.04 340 600 6500

The t statistic based on the robust estimation to test the null hypothesis
H0 : A = 5500 verses the alternative hypothesis Ha : A 6= 5500, is given by

Ttest =
Ârobust − 5500

ese(Ârobust)

where ese(Ârobust) is the estimated standard error of Ârobust. This T statistic
has an asymptotic t distribution with 24 degrees of freedom (30 observations
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Figure 5: Comparison of PROC NLMIXED Fit and Robust Fit to Dose-
Response Data

minus 6 parameters estimated). Similarly, the T statistics for the B, C, and
D parameters were formulated. The 1000 T statistics for each of the 4 fixed
effects parameters were plotted against the t(24) distribution in a Q-Q plot,
given in Figures 6 and 7, in Appendix C. Note that the T statistics for the
four fixed effects parameters follow a noncentral t distribution. The reason
for this is that the imposed outlier shifts the population mean slightly, but
the robust estimation of the fixed effects is influenced little. By comparison,
the same 1000 datasets were analyzed using SASR© , and the 1000 T statistics
were plotted against the t(24) distribution in a Q-Q plot, in Figures 8 and
9, in Appendix C. Note that the non-robust estimates deviate substantially
from the t distribution. The outlying observation distorted the statistical
inferences for the non-robust estimation procedure.

6 Discussion and Conclusion

Nonlinear mixed models are very useful statistical tools in analyzing nonlin-
ear data with random effects. However, when outliers are present in the data,
current non-robust estimation methods may produce erroneous or misleading
results. A robust procedure is needed.

A robust nonlinear mixed model is proposed by first using a Taylor series
to approximate the nonlinear mixed model. The log likelihood is altered by
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incorporating an appropriate loss function, ρ, of the residuals. Robust esti-
mates of the parameters for the means model and for the variance compo-
nents can then be obtain via an iterative technique based on Fisher scoring.
Asymptotic theory leads to using Wald Inference to testing hypotheses of
interest.

The robust procedure is illustrated to be successful on a case study involv-
ing actual dose-response data. A short simulation experiment supports the
procedure and shows the superiority of the robust nonlinear mixed models
over the classical nonlinear mixed models.

Appendix A: Derivative Calculations

∂r

∂θi
=
∂V(θ)−1/2

∂θi
(ỹ −Dβ)

= −1

2
V(θ)−1

∂V(θ)−1/2

∂θi
V(θ)−1/2(ỹ −Dβ) = −1

2
V(θ)−1

∂V(θ)−1/2

∂θi
r

∂V(θ)−1

∂θi
= −V(θ)

∂V(θ)

∂θi
V(θ)−1

∂ψ(r)

∂θi
=
∂ψ(r)

∂r′
∂r

∂θi
= Ψ

∂r

∂θi
= −1

2
ΨV(θ)−1

∂V

∂θi
r, where Ψ = 〈∂ψ(ri)

∂ri
〉

∂2m

∂θi∂β
=

∂

∂θi

[
D′V(θ)−1/2ψ(r)

]
= −1

2
D′V(θ)−1

∂V

∂θi
V(θ)−1/2ψ + D′V(θ)−1/2Ψ(r)

[
−1

2
V(θ)−1

∂V

∂θi
r

]
E

[
∂2m

∂θi∂β

]
= 0 − 1

2
D′V(θ)−1/2E

[
〈∂ψ(ri)

∂ri
〉V(θ)−1

∂V

∂θi
r

]
= 0, because

ψ(ri) is an odd function (see class notes from Birch [21]) and we are as-
suming that the underlying distribution of the errors is symmetric about

zero. Hence, E
[
∂ψ(ri)
∂ri

ri

]
= 0.

Appendix B: BDR Data

Appendix C: Simulation Plots
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Dose Plate 1 Plate 2 Plate 3

20 412.834 429.970 416.690

5 392.792 399.475 397.989

1.25 473.593 485.651 466.704

0.3125 886.381 904.203 850.612

0.0781 2127.067 2180.242 2148.495

0.0195 3887.744 3856.684 3756.269

0.0049 4993.997 5082.415 4925.234

0.0012 5459.608 5568.591 5430.150

0.0003 7407.658 5723.422 5593.813

0.0001 5808.212 5786.643 5503.879
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Dist. of 1000 Generated Robust Statistics Testing H0: B=−0.95
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Figure 6: Q-Q Plot of Robust t Statistics Verses t(24) for the A and B
Parameters
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Dist. of 1000 Generated Robust Statistics Testing H0: D=340
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Figure 7: Q-Q Plot of Robust t Statistics Verses t(24) for the C and D
Parameters
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Dist. of 2000 Generated Statistics Testing H0: A=5500
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Dist. of 2000 Generated Statistics Testing H0: B=−0.95
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Figure 8: Q-Q Plot of SAS t Statistics Verses t(24) for the A and B Param-
eters

Dist. of 2000 Generated Statistics Testing H0: C=0.04

Statistic

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

−4 −2 0 2 4

−4
−2

0
2

4

Q−Q Plot of Statistics for C against a t−Dist(24)

Statistic

T
he

or
et

ic
al

 Q
ua

nt
ile

s

Dist. of 2000 Generated Statistics Testing H0: D=340
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Figure 9: Q-Q Plot of SAS t Statistics Verses t(24) for the C and D Param-
eters
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