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Abstract 

A regression methodology is introduced that obtains competitive, robust, efficient, high 

breakdown regression parameter estimates as well as providing an informative summary 

regarding possible multiple outlier structure. The proposed method blends a cluster analysis 

phase with a controlled bounded influence regression phase, thereby referred to as cluster-based 

bounded influence regression, or CBI. Representing the data space via a special set of anchor 

points, a collection of point-addition OLS regression estimators forms the basis of a metric used 

in defining the similarity between any two observations. Cluster analysis then yields a main 

cluster “half-set” of observations, with the remaining observations comprising one or more 

minor clusters. An initial regression estimator arises from the main cluster, with a group-additive 

DFFITS argument used to carefully activate the minor clusters through a bounded influence 

regression frame work. CBI achieves a 50% breakdown point, is regression equivariant, scale 

and affine equivariant and distributionally is asymptotically normal. Case studies and Monte 

Carlo results demonstrate the performance advantage of CBI over other popular robust 

regression procedures regarding coefficient stability, scale estimation and standard errors. The 

dendrogram of the clustering process and the weight plot are graphical displays available for 

multivariate outlier detection. Overall, the proposed methodology represents advancement in the 

field of robust regression, offering a distinct philosophical view point towards data analysis and 

the marriage of estimation with diagnostic summary. 

 

1. Introduction  

The detection of observations not conforming to a given statistical model is a common goal of 

the data analyst. Many methods have been proposed to aid in the detection of such 

nonconforming observations or “outliers”. For example, in a recent paper by Fan et al.1, a 

hierarchical clustering method was employed that greatly improves the ability of certain 

multivariate control chart techniques at detecting the presence of multivariate outliers. Detecting 



unusual observations in the multiple regression setting is a far more complicated process 

however and many techniques have been introduced (see section 2) for this purpose. As in the 

Fan et al.1 paper, the use of clustering methodology can improve the ability of a technique to 

identify unusual data points in the multiple regression setting. The use of clustering to improve 

the properties of the bounded-influence regression method is demonstrated in this paper.  

 

To illustrate the difficulty at detecting unusual data point, the simple example below gives the 

comparison of the proposed method to several existing robust procedures when the data has more 

than one high leverage point or “hip”. The data set has 11 observations with observations 1-8 

generated from the linear model 

𝑦𝑖 = 100 − 4𝑥𝑖 + 𝜀𝑖 

where 𝜀𝑖~𝑁(𝜇 = 0,𝜎2 = 25) , and with the regressor variable generated via 𝑥𝑖~𝑈[10,20] .  

Observations 9-11 were arbitrary added to reflect a mild influence point and two hips, 

respectively.  

 
Figure 1.1: The fitted line of the different robust methods  

The data are plotted in Figure 1.1 where the outlier (9) and the two hips (10, 11) are clearly seen. 

Regarding the collection of fits also displayed in Figure 1.1, only the proposed method (CBI) 

detects the correct trend of the uncontaminated data. Each of the other estimators was 
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dramatically misled by the joint influence of these three arbitrary points, resulting in a positive 

slope estimate when the true underlying slope is negative. 

 

In building a linear regression model, a single unusual observation can dramatically influence 

ordinary least squares (OLS) estimation. With OLS, a single low leverage outlier can have a 

dramatic effect on the estimation of the general trend, especially concerning the intercept. 

However, a single high influence point, or hip, can have a dramatic effect on any or all parameter 

estimates. And, as illustrated in the example, the joint influence of several hips can have an even 

greater deleterious impact on parameter estimates. These coefficients and their standard errors, 

along with predictions, diagnostics, hypothesis tests, and other numerical measures can each 

become very misleading without a thorough exploratory data analysis accompanying it.  

 

This research focuses on the study of robust, high breakdown linear regression modeling. As this 

discipline is extremely computationally intensive, much of the published work in this area has 

occurred since the early 1980’s. Of course, some ideas were proposed much earlier, but generally 

limited in actual application. Methods such as M regression (Huber and Ronchetti2), and 

bounded influence (BI) (Huber and Ronchetti2) regression work well in the presence of low 

leverage outliers and at most one hip respectively. However, they are unable to combat a small 

percentage of outliers. Least median of squares (LMS) (Rousseeuw3) regression and least 

trimmed squares (LTS) (Ruppert and Carroll4) regression, on the other hand, are examples of 

high breakdown estimators as they possess the ability to provide parameter estimates with as 

much as 50% of the data being contaminated. Poor efficiency and numerical/computational 

sensitivity with large datasets has typically led to their primary use as an initial estimator feeding 

into other robust procedures such as M or BI estimators. Examples include Mallows 1-step 

(M1S) regression (Simpson et al.5) and Schweppe’s 1-step (S1S) regression (Coakley and 

Hettmansperger6), which are one-step adjustments of LTS that increase efficiency versus the 

LTS estimator. However, two virtually identical LTS estimates may yield dramatically different 

M1S (or S1S) estimators (Lawrence7), thereby illustrating a potential negative issue with 

repeated sampling based methods. Another high breakdown one-step estimation method is due to 

Gervini and Yohai8. Their robust and efficient weighted least square estimate (REWLS) 

procedure attains full asymptotic efficiency with the assumption of normally distributed random 



errors. However, according to the Monte Carlo study in Section 3.1, the REWLS, on the average, 

fails to correctly identify the good and bad high leverage points when the error term is not ideally 

normally distributed. 

 

In this paper, CBI is introduced as a new regression methodology that obtains competitive, 

robust, efficient, high breakdown regression parameter estimates. Additionally, this method 

provides an informative summary regarding possible multiple outlier structure. 

 

 

2. Review of Selected Robust Regression Methods 

As the basis for linear regression analysis, the statistical model is restricted to be of the form 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯+ 𝛽𝑘𝑥𝑘𝑖 + 𝜀𝑖, 

with the response variable, 𝑦𝑖, being explained as a linear function of the 𝑘 regressor variables, 

𝑥𝑗𝑖, 𝑗 = 1,2 … 𝑘,  plus a random error component, 𝜀𝑖, for each of the 𝑛 observations, 𝑖 = 1,2 …𝑛. 

 

Given the computational nature of the proposed method, clarity in notation becomes quite 

important and, therefore, this paper offers sufficient detail. The linear model also can be written 

matrix form as 

𝒚 = 𝑿𝜷 + 𝜺   , where 𝜺~𝑁(𝟎,𝜎2𝑰), 

or elementwise as 
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There are 𝑝 = 𝑘 + 1 unknown parameters that form the 𝑝 × 1 parameter vector  𝜷, which is to 

be estimated by the 𝑝 × 1 vector  𝜷�. This subsequently yields the estimated fits as  𝒚� = 𝑿𝜷�. 

 

Further, the 𝑛 × 1 vector of residuals is computed as 𝒓 = 𝒚 − 𝒚� , with  𝑟𝑖  representing the 

residual for the  𝑖𝑡ℎ observation. Also, define 𝒁  as the 𝑛 × 𝑘  matrix containing only the 

𝑘regressor variables, with 𝒁𝑦 representing the 𝑛 × 𝑝 matrix formed by augmenting the vector 𝒚  

to 𝒁. To accommodate reference to individual observations, let the 𝑖𝑡ℎ row of  𝑿  be denoted by 



the 1 × 𝑝  row vector 𝒙𝑖𝑇  and the 1 × 𝑘  row vector 𝒛𝑖𝑇  denote the 𝑖𝑡ℎ  row of  𝒁 . When the 

response variable is included, the notation for  𝑖𝑡ℎ row of 𝒁𝑦 is 𝒛𝑦,𝑖
𝑇 . 

 

Consider the objective function 

min
∀𝒃

�𝑟𝑖2
𝑛

𝑖=1

, 

for the OLS estimator, which may be written as  

min
∀𝒃

�𝜌(𝑟𝑖)
𝑛

𝑖=1

, 

with  𝜌(𝑡) = 𝑡2. In robust regression, the function  𝜌 can be selected to either down weight or 

bound any argument rising from unusual observations. This becomes the basis for M regression 

(Huber and Ronchetti2) which has the objective function 

min
∀𝒃

�𝜌�
𝑦𝑖 − 𝒙𝑖𝑇𝒃

𝜎�
�

𝑛

𝑖=1

 , 

Where the 𝜌-function is chosen to be bounded and odd-symmetric,  𝒃  represents an arbitrary 

point in the p-dimension estimation space, and where 𝜎� is some appropriately chosen estimate of 

 𝜎 . The choice for 𝜎� is generally limited to robust measures of scale. One such estimator that is 

frequently used is the median absolute deviation (MAD), where 

𝑀𝐴𝐷 = 1.4826 med
∀𝑖

�𝑟𝑖 − med
∀𝑖

𝑟𝑖�. 

Taking derivatives with respect to  𝒃 leads to solving  𝑝 “altered normal equations”, 

�𝜓�
𝑦𝑖 − 𝒙𝑖𝑇𝒃

𝜎�
�𝒙𝑖 = 0

𝑛

𝑖=1

, 

where  𝜓(𝑡) = 𝑑𝜌(𝑡)
𝑑𝑡

  and  𝜷�𝑀  is the solution for  𝒃 . These altered normal equations form a 

system of nonlinear equations that may be solved by a number of popular numerical methods 

including (1) Newton-Raphson and (2) iteratively reweighted least squares (IRLS), the later used 

in this paper. At convergence, IRLS produces the M regression parameter estimator 

𝜷�𝑀 = (𝑿𝑇𝑾𝑿)−1𝑿𝑇𝑾𝒚, 

where 𝑾 is the 𝑛 × 𝑛 diagonal “weight matrix”, with diagonal elements denoted as 𝑤𝑖 . Each 

weight, 𝑤𝑖, determines how much emphasis the regression will place on a particular observation. 



A large weight (near 1) should indicate a good observation. An outlier or a hip, on the other 

hand, should get a reduced weight or perhaps even a zero weight. In M regression the 𝑖𝑡ℎ weight 

is calculated as 𝑤𝑖 = 𝜓(𝑟𝑖 𝜎�⁄ )
𝑟𝑖 𝜎�⁄

, a function of the 𝑖𝑡ℎ residual. Typically, the larger is the residual, 

the smaller is the weight. 

 

A single hip will “pull” the fitted M regression line toward it to make the corresponding residual 

small, thus that weight will be large. This means that M regression can be dominated by a single 

hip. One solution to this problem is to use bounded influence (BI) regression. Here, the name 

refers to “bounding” the influence that the point 𝒙𝑖𝑇  has in the regressor-space. One altered 

normal equation form, called the Schweppe form (Staudte9), is written as 

∑ 𝑢(𝒙𝑖)𝜓�
𝑦𝑖−𝒙𝑖

𝑇𝜷�

𝜎�𝑢(𝒙𝑖)
�𝒙𝑖 = 0𝑛

𝑖=1 . 

Here,  𝑢(𝒙𝑖) is chosen so that the effect of a large 𝒙𝑖𝑇 is reduced if (𝑦𝑖,𝒙𝑖𝑇) is a hip. One choice is 

to have 𝑢(𝒙𝑖) = 𝜋𝑖 = 1−ℎ𝑖𝑖
�ℎ𝑖𝑖

, where ℎ𝑖𝑖 is the 𝑖𝑡ℎ diagonal element of the so-called hat matrix, 𝑯 , 

with 𝑯 = 𝑿𝑇(𝑿𝑇𝑿)−1𝑿 . The  𝜋𝑖  value is referred to as the BI weight. The BI regression 

estimator can be obtained in exactly the same manner as the M-estimator via IRLS, as 

𝜷�𝐵𝐼 = (𝑿𝑇𝑾𝑿)−1𝑿𝑇𝑾𝒚.
 

However, the  𝑖𝑡ℎ weight now has the form 𝑤𝑖 = 𝜓 �𝑟𝑖
∗

𝜋𝑖
� 𝑟𝑖

∗

𝜋𝑖
� , where 𝑟𝑖∗ is the scaled residual 𝑟𝑖 𝜎 �⁄ . 

Specifically, the BI weight depends on both the residual and the location of  𝒙𝑖𝑇 in the regressor-

space. More details involving the choice of  𝜓  function may be found in Appendix A-1. 

 

While M and BI estimators provide an improvement over OLS if the data has an outlier or hip, 

respectively, they cannot provide protection against data with even modest amounts of 

contamination. Ruppert and Carroll4 introduced LTS to combat this situation, defining the 

objective function as 

min
∀𝒃

�𝑟[𝑖]
2

ℎ

𝑖=1

, 

representing the sum of the ℎ  smallest squared residuals where ℎ is generally taken to be 

[(𝑛 + 𝑝 + 1) 2⁄ ], with [.] denoting the greatest integer function. Since this objective function is 



not differentiable, no closed-form expression exists for the LTS estimator. However, algorithms 

are available that give the exact LTS estimator for the location model, the exact LTS estimator 

for the regression model based on small data sets, and a relatively accurate LTS estimator for 

large data sets. The algorithmic details may be found in Rousseeuw and Van Driessen10.   

Historically, methods like LTS (and its predecessor LMS) had involved repeated sampling 

computational methods incorporating probabilistic arguments. 

 

One problem with high breakdown estimators such as LTS is poor efficiency due to large 

variability associated with estimated coefficients. The remedy for this poor efficiency is to use 

the LTS estimator, or another high breakdown estimator, as an initial estimator  𝜷�0, with the 

generalized M estimator form to obtain a one-step generalized M estimator. The S1S estimator is 

one such estimator and results from solving the “altered” normal equations 

∑ 𝑤𝑖𝜓 �
𝑟𝑖(𝜷�0)
𝜎�0

� 𝒙𝑖 = 0𝑛
𝑖=1 . 

A Gauss-Newton approximation using a first-order Taylor series expansion about the initial 

estimate 𝜷�0 yields a one-step improvement of the form  

𝜷�𝑆1𝑆 = 𝜷�0 + (𝑿𝑻𝑩𝑿)−𝟏𝑿𝑻𝑾𝜓�𝒓�𝜎�0. 

Further computational details regarding S1S are given in Appendix A-2.  

 

None of the above estimators achieve full efficiency at the normal distribution while 

simultaneously maintaining a breakdown bound close to 50%. Gervini and Yohai8 proposed an 

adaptive one-step estimation method that attains full asymptotic efficiency at the normal error 

distribution while at the same time has a high breakdown bound and small maximum bias. Their 

method, referred to as the REWLS estimator, is a weighted LS estimator computed from an 

initial high breakdown estimate  𝜷�0, and a robust scale estimate 𝜎�0 such as MAD. However, 

rather than deleting those observations whose absolute scaled residuals are greater than a given 

value, the procedure will keep a number 𝑁 of observations, corresponding to the smallest values 

of the absolute scaled residual 𝑟𝑠𝑖 = �𝑟𝑖�𝜷�0��
𝜎 � 0

, 𝑖 = 1, …𝑛. The 𝑁  has the property that in large 

samples under normality it will have 𝑁 𝑛� → 1  , which means a vanishing fraction of 

observations will be deleted and full efficiency will be attained (Maronna et al.11). 

Computational details regarding the choice of  𝑁 may be found in Appendix A-3.  



 

The REWLS estimator can be obtained as  

𝜷�𝑅𝐸𝑊𝐿𝑆 = �𝜷
�0 + (𝑿𝑇𝑾𝑿)−1𝑿𝑻𝑾𝒚     𝑖𝑓 𝜎�0 > 0
𝜷�0                                          𝑖𝑓 𝜎�0 = 0

, 

where 𝑊 is the diagonal matrix with 

𝑤𝑖 = �1 𝑖𝑓 𝑟𝑠𝑖 ≤ 𝑟𝑠𝑁
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    . 

 
3. Proposed method 

The proposed regression methodology offers a new philosophical approach to the robust 

regression arena and consists of two primary phases, the cluster phase and the regression phase. 

First, an initial high-breakdown regression estimator is produced via a sophisticated clustering 

algorithm. Second, refinement of this initial regression estimator is investigated and possibly 

implemented under a carefully structured use of BI regression. The rationale behind this second 

phase is to allow for a possible improvement in efficiency, especially when the level of data 

contamination does not come close to approaching 50%. The proposed method has been named 

cluster based bounded influence regression, or CBI for short, to reflect the nature of its two 

phases computation process.  

 

The cluster phase begins with high-breakdown location and scale estimation of the 𝑝 

dimensional regressor-response space. A special set of points, referred to as the set of anchor 

points, is computed that together represent the general trend of the data. Each observation is then 

characterized by the OLS regression fit that would occur if this individual observation is 

augmented to the anchor points. High breakdown location and scale estimation of this set of n 

OLS coefficients provides the foundation for the construction of the similarity matrix 

(technically, a distance matrix). The desire for a tight, compact sphere of similar coefficients 

exhibiting a common trend description is the basis for the selection of complete linkage 

hierarchical clustering (Lawrence7) as the default method and clustering is performed until an 

initial main cluster of at least [(𝑛 + 𝑝 + 1) 2⁄ ]  observations are formed. Two aspects worth 

mentioning are that (1) the OLS sensitivity to a single point is being exploited to our advantage 

in evaluating the data, and (2) the anchor points serve to alleviate repeated sampling (as required 



by other 50% breakdown point estimators such as LTS) and the use of minimal sized elemental 

subsets that must be in general position (i.e. no singularity issues). 

 

A simple OLS fit to this main cluster is used as the basis for the possible adjustment of the 

anchor set metric to more directly relate to the general trend. A revised similarity matrix is 

constructed, with a second cluster analysis yielding a revised, final main cluster and 𝑔 minor 

clusters. The determination of this cluster classification structure completes the cluster phase. 

 

To begin the regression phase, the initial CBI estimator is simply the OLS estimate of the main 

cluster observations. A high breakdown scale estimate is then computed. High breakdown BI 

leverage weights are computed from the regressor-space only. Using only the main cluster, a BI 

regression updates the initial CBI estimator. To this point, the minor clusters have not been 

utilized in the computation of the CBI regression estimator and their observations are said to be 

inactive. The activation process for these remaining observations has two primary stages. First, a 

𝐷𝐹𝐹𝐼𝑇𝑆+𝐼2  statistic is computed for each of the minor clusters, where 𝐼 = 1,2, … ,𝑔. A candidate 

minor cluster is one such that  𝐷𝐹𝐹𝐼𝑇𝑆+𝐼2 < 𝛿 for the cutoff value 𝛿. Then, a single 𝐷𝐹𝐹𝐼𝑇𝑆+𝐽2  

statistic, denoted by  𝐽, is computed for the union of all candidate minor clusters. If  𝐷𝐹𝐹𝐼𝑇𝑆+𝐽2  is 

“small enough”, then the final CBI estimator is determined from this activation process 

(provided at least one minor cluster observation obtained a nonzero weight). Otherwise, the 

minor clusters do not play an active role (i.e. all observations possess a zero weight) and there is 

no further update to the current CBI regression estimator. A final CBI scale estimate is computed 

once the final CBI regression estimator has been determined. 

 

The detailed algorithm consisting of ten interrelated steps for the CBI estimator is presented 

below. Steps 1 through 3 represent the cluster phase and steps 4 through 10 represent the 

regression phase. Notation is introduced as needed.  

 

Step1 

Perform minimum volume ellipsoid, MVE, estimation (see Rousseeuw and Leroy12) of 

 𝒁𝒚 ; determine the (2𝑝 + 1) × 𝑝  anchor point matrix, Ω . These points include 

𝑴𝑽𝑬1(𝒁𝑦), the MVE location vector for 𝒁𝒚 , and the end points of the ellipsoid of 



constant distance 𝜒0.975,𝑝
2  from  𝑴𝑽𝑬1(𝒁𝑦) based on the 𝑴𝑽𝑬2(𝒁𝑦) metric, the MVE 

scale matrix estimator for 𝒁𝒚 , the pair of end points is determinate by the expression 

𝑴𝑽𝑬1(𝒁𝑦) ± �𝜆𝑖𝜒0.975,𝑝
2  𝒆𝑖  , where 𝜆𝑖  and 𝒆𝑖  is the 𝑖𝑡ℎ  eigenvalue and eigenvector of 

𝑴𝑽𝑬2(𝒁𝑦), respectively. 

Step 2 

Determine the  𝑛 × 𝑝 base regression estimator matrix 𝑩. The  𝑖𝑡ℎ row of  𝑩, denoted by 

the 1 × 𝑝 vector  𝒃𝑖 , is defined as the estimator that results from an OLS regression 

analysis of the set of anchor points supplemented by the addition of the 𝑖𝑡ℎ observation in 

the dataset. Perform an MVE estimation of  𝑩, treating each row of 𝑩 as an observation 

in  𝑝 dimensions. 

 
Step 3 

Using 𝑴𝑽𝑬2(𝑩)  as the distance metric, compute a 𝑛 × 𝑛  similarity matrix 𝑺  whose 

elements are defined to be 

𝑠𝑖𝑗 = �𝒃𝑖 − 𝒃𝑗�
𝑇(𝑴𝑽𝑬2(𝑩))−1�𝒃𝑖 − 𝒃𝑗�. 

Perform a cluster analysis on the dataset given the similarity matrix 𝑆 and using complete 

linkage to obtain the tightest cluster of  𝒃𝑖 vectors. The initial main cluster, 𝐶0, is defined 

at the first instance of which a single cluster consists of at least ℎ = [(𝑛 + 𝑝 + 1) 2⁄ ] 

observations. The remaining observations fall into one of 𝑔  minor clusters that are 

labeled as  𝐶1,  𝐶2, … ,𝐶𝑔. 

 
Step 4 

Compute the OLS estimate 𝜷�0  using the data points in 𝐶0. A preliminary estimate of 

scale, 𝜎�0, is defined to be the MAD of all 𝑛 residuals 𝒓�𝜷�0� where 

𝑟𝑖�𝜷�0� = 𝑦𝑖 − 𝒙𝑖𝑇𝜷�𝟎. 

Determine the set of observations, 𝐻, such that  

𝐻 = �𝑖: �𝑟𝑖�𝜷�0�� ≤ 𝜎�04.685�2𝑝𝑛 (𝑛 − 2𝑝)� �. 
 
Step 5 

Using the data points in 𝐻, compute the 𝑝 × 1 mean vector 𝒎𝐻(𝒁), of the regressor data 

in 𝐻,and 𝑝 × 𝑝  covariance matrix 𝑽𝐻(𝒁) , using standard moments estimators, of the 



regressor data in 𝐻, define the 𝑝 × 1 robust regressor distance vector 𝒅 containing the 

𝑝 elements 

𝑑𝑖 = (𝒛𝑖 −𝒎𝐻(𝒁))𝑇(𝑽𝐻(𝒁))−1(𝒛𝑖 −𝒎𝐻(𝒁)). 

 
Step 6 

Mimic step 1 to step 3 by replacing the MVE statistics with the weighted mean and 

covariance estimates for the data to get the new initial main cluster, 𝐶0 , and 𝑔 minor 

clusters 𝐶1, 𝐶2 ..𝐶𝑔.The weight for the  𝑖𝑡ℎ data point is define as 

𝑤𝑖 = �1, 𝑖 ∈ 𝐻
0, 𝑖 ∉ 𝐻 , 

Compute the initial CBI estimator, 𝜷�1, using WLS and subsequently updated the scale 

estimate 𝜎�1 as MAD of all 𝑛 new residuals.  

 
Step 7 

Determine the ℎ × 1 BI leverage weight vector, 𝝅, whose elements are defined as 

𝜋𝑖 = �
1, 𝑖 ∈ 𝐶0

min (1,
𝜒0.975,𝑝−1
2

𝑑𝑖
), 𝑖 ∉ 𝐶0

 

Perform BI regression using only the main cluster, 𝐶0, to obtain, at convergence of IRLS, 

the estimate 𝜷�2.  

 
Step 8 

Let 𝐼 represent any minor cluster and 𝑚𝐼  be the size of 𝐼, and let 𝝅(𝐶0,𝐶𝐼)  be the sub-

vector set of 𝝅 that corresponds only to the  𝐶0 and  𝐶𝐼  observations. Perform the BI 

regression with these new data points and leverage weight vector 𝝅(𝐶0,𝐶𝐼)to obtain the 

estimate 𝜷�+𝐼 at convergence. A 𝐷𝐹𝐹𝐼𝑇𝑆+𝐼2  statistic is then computed via 

𝐷𝐹𝐹𝐼𝑇𝑆+𝐼2 =
∑ �𝑦�𝑖,+𝐼�𝜷�+𝐼�−𝑦�𝑖�𝜷�2��

2𝑛
𝑖=1

𝑚𝐼𝜎�12
, 

where 𝑦�𝑖,+𝐼(𝜷�+𝐼) represent fits when using both 𝐶0  and 𝐶𝐼  observations and 𝑦�𝑖�𝜷�2� 

represents fits when using just 𝐶0 observations. This statistic is computed for each of the 

𝑔 minor clusters. 

 
  



Step 9 
Define the scalar 𝛿 to represent the maximum allowable 𝐷𝐹𝐹𝐼𝑇𝑆+𝐼2   statistic. Then, let  𝐽 

represent the union of all activation candidate minor sets, i.e. 

𝐽 = �𝐶𝐼
∀𝐼

|(𝐷𝐹𝐹𝐼𝑇𝑆+𝐼2 ≤ δ and ∃i∈I|wi > 0). 

Provided that  𝐽 ≠ ∅, then with  𝜷�2,  𝜎�12 and  𝝅(𝐶0,𝐶𝐽) as inputs to obtain the BI regression 

estimate 𝜷�+𝐽 and  𝐷𝐹𝐹𝐼𝑇𝑆+𝐽2 .  The default value of  𝛿 is 4. 

 
Step 10 

𝜷�𝐶𝐵𝐼 = �
𝜷�+𝐽, 𝑖𝑓�𝐷𝐹𝐹𝐼𝑇𝑆+𝐽2 ≤ δ and ∃j∈J�wj > 0�|𝐽 ≠ ∅
𝜷�2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The CBI scalar estimator is then updated as the MAD of new residuals. The final CBI 

weights for the individual observations are simply the observations weights at 

convergence of BI regression used to compute  𝜷�𝐶𝐵𝐼. 

 

Three scale estimators are provided by the CBI procedure, specifically  𝜎�2𝐶𝐵𝐼, 𝑣�2𝐶𝐵𝐼 and 𝑣�𝑤
2
𝐶𝐵𝐼. 

𝜎�𝐶𝐵𝐼 is the MAD of the CBI residuals. Given the CBI scale estimate 𝜎�𝐶𝐵𝐼, the BI leverage weight 

vector 𝝅, and 𝜷�𝐶𝐵𝐼, a robust mean square error that mimics the robust ANOVA scale estimate 

introduced  by Birch13 is found via 

𝑣�2𝐶𝐵𝐼 =

𝑛2

𝑛−𝑝
𝜎�2𝐶𝐵𝐼 ∑ 𝜓2 �𝑟𝑖�𝛃

�CBI�
𝜋𝑖𝜎�𝐶𝐵𝐼

�𝑛
𝑖=1

∑ 𝜓, �𝑟𝑖�𝛃
�CBI�

𝜋𝑖𝜎�𝐶𝐵𝐼
�𝑛

𝑖=1

. 

Using the effective sample size,  𝑛𝑤 = ∑ 𝑤𝑖
𝑛
𝑖=1  (Birch14), a modified version of the robust 

analysis of variance scale estimate then becomes  𝑣�𝑤
2 

𝑣�𝑤
2
𝐶𝐵𝐼 =

𝑛𝑤2

𝑛𝑤−𝑝
𝜎�2𝐶𝐵𝐼 ∑ 𝜓2 �𝑟𝑖�𝛃

�CBI�
𝜋𝑖𝜎�𝐶𝐵𝐼

�𝑛
𝑖=1

∑ 𝜓, �𝑟𝑖�𝛃
�CBI�

𝜋𝑖𝜎�𝐶𝐵𝐼
�𝑛

𝑖=1

. 

Once the CBI estimate is obtained, the BI based analysis of variance methods of Birch13 and 

Birch and Agard15 can be used to perform inference on any single parameter or any subset of 

parameters.  

 



Many theoretical properties of the CBI estimator have been studied and proved by Lawrence7.  

For example, it has been demonstrated that the CBI regression estimator belongs to the family of 

high breakdown regression estimators; with a breakdown point approaching 50% as  𝑛 → ∞. It 

was further showed that the CBI estimator is asymptotically normally distributed. That is, 

√𝑛�(𝜷�𝐶𝐵𝐼 − 𝜷�
𝐿𝑎𝑤
�⎯� 𝑁[𝟎,𝑴−1𝑸𝑴−1], 

where the 𝑴 and 𝑸 is defined as 

𝑴 = 𝐸𝐹 ��𝑤 +
𝑑𝜔(𝒙, 𝑟)

𝑑𝑟
𝑟�𝒙𝒙𝑇� , 

𝑸 = 𝐸𝐹[𝜔2(𝒙, 𝑟)𝑟2𝒙𝒙𝑇] , 

w = 𝜔(𝒙, 𝑟).  

 

The function 𝜔(𝒙, 𝑟), the weight function is nonnegative, bounded and measurable in (𝒙, 𝑟). The 

CBI regression estimator has also been shown to achieve regression equivariance, scale 

equivariance and affine equivariance properties (see Rousseeuw and Leroy12 for definitions of 

these equivariance properties). These equivariance properties also impact the following Monte 

Carlo simulation study by the fact that the values defined for the regression coefficients and scale 

will not impact the final Monte Carlo results; i.e., these values are themselves arbitrary and 

meaningless. Overall, the theoretical foundation for the CBI methodology strongly supports its 

inclusion in the class of high breakdown regression estimators. 

 

Reflection on the development of the CBI algorithm yields an interesting and diverse discussion 

onto itself. Motivation initially stemmed from an interest in how iteration breaks down M and BI 

estimators and a curiosity about joint influence diagnostics in general. The joint influence aspect 

itself led to the inclusion of some sort of clustering mechanism to identify these various 

subgroups of problematic observations. Many forms of the initial similarity matrix construct 

were considered, including one based on the altered hat matrix. Further, initial strategies were 

more spatially oriented and were utilizing single-linkage clustering to take advantage of the 

chaining property that is often considered a detrimental property of the method but could track a 

regression trend under this alternative use. In fact, such a CBI version was proposed early in its 

development (Lawrence7). 

 



A major breakthrough in the development of the CBI algorithm occurred with the introduction of 

the anchor set. Ironically, this thought arose during development of a closed-form computation 

method for a multivariate PC  statistic in a completely different research area. However, it was 

clear that this anchor set could alleviate the random subsampling with elemental sets issues 

(faced with the leading high-breakdown estimators) as it was large enough to fit the regression 

model without any singularity issues.  Further, it had a direct implementation into the clustering 

framework. The exploitation of the OLS breakdown property would form the basis of this new 

paradigm. Common regression estimates would indicate common trends (either general trend or 

common deviant trend that would reflect joint influence) and, very importantly, there is no 

spatial requirement directly involved. Joint influence can involve observations scattered across 

the response-regressor space. As a direct consequence, clustering moved from single-linkage to 

complete-linkage to more appropriately capture what are effectively similar regression estimates. 

 
Iteration has both beneficial and detrimental aspects, so the CBI algorithm had to be robust to 

such negative effects. Earlier versions of CBI allowed for minor clusters to be added 

sequentially. From the research, it was deemed more prudent to assess them individually, then 

together, to avoid estimator drift due to iteration as well as to further bolster the robustness 

versus joint influence of several minor clusters. 

 

Overall, while the technical and computational details of the CBI algorithm have evolved during 

the development process, the general philosophy and intent have remained steadfast. The goal 

was to take an efficient low-breakdown point method, BI regression, and improve the breakdown 

point while not making a huge sacrifice regarding efficiency. A more thorough discussion of the 

motivation of each step of the CBI algorithm may be found in chapter 5 of Lawrence7. 

 

3.1 Case Studies and Comparison  

Two well-known datasets are used to illustrate and compare the CBI method to several other 

robust techniques, (1) the Pendleton and Hocking16 (PH) data, and (2) the Hawkins et al.17 

(HKB) data. The PH dataset has three regressors 𝒙1,𝒙2 ,𝒙3  and 𝑛 = 26  observations. The 

parameters to be estimated are 𝜷𝑇 = (20  3 − 2  0). Three low-leverage outliers were artificially 

created and inserted as observations 11, 17 and 18.  One hip was inserted as observation 24.  



 

The CBI cluster phase of the PH data resulted in a main cluster of 19 observations (four more 

than h =15) and five minor clusters. A summary of the entire CBI regression analysis is provided 

as Table 3.1 and Figure 3.1.  

Table 3.1: Summary of the CBI regression analysis of the PH dataset 

Cluster History  

Step  Clusters  n=26 

Initial  𝐶0 = {2  ,5  ,7  ,8  ,9 ,12 ∶ 16 ,19 ∶ 23} h=15 

Final  𝐶0 = {1: : 5 , 7 , 8, 10, 12: 16, 19,21: 23, 25 ,26} 

𝐶1 = {6 , 9 ,20}𝐶2 = {11} 

   𝐶3 = {17}𝐶4 = {18} 

𝐶5 = {24} 

Initial OLS : 

intercept 26.987      

𝑋1 2.601 

𝑋2 -2.108 

𝑋3 -0.173 

Minor Sets DFFITS+𝐼2 Activate 

𝐶1 1.9153 YES 

𝐶2 0 NO 

𝐶3 0 NO 

𝐶4 0 NO 

𝐶5 0 NO 

Candidate J DFFITS+𝐽2 Activate 

𝐶1 1.9153 YES 

Parameter Estimate  

Parameter  Estimate Sd.Error t P -value 

intercept 25.615 13.677 1.873 0.038 

𝑋1 2.719 0.695 3.909 0.000 

𝑋2 −2.136   0.321 -6.638 0.000 

𝑋3 −0.194 0.441 -0.440 0.331 

Scale  𝜎�𝐶𝐵𝐼 = 0.516    𝑣� = 0.306    𝑣�𝑤 = 0.254 

 

  



The final CBI fitted equation is 

𝑦�𝑖 = 25.615 + 2.719𝑥1𝑖 − 2.136  𝑥2𝑖 − 0.194𝑥3𝑖. 

It is clear (p-value = 0.331) that 𝒙3 is not significant in the presence of  𝒙1 and 𝒙2, a correct 

decision for this case study. The intercept, 𝒙1 and 𝒙2 are each statistically significant (p-values of 

0.038, 0.000and 0.000, respectively) terms, as they should be. According to the CBI weight plot 

in Figure 3.1, four observations received zero weight, these being the three outliers and the one 

hip. 

 

 

 
 

Figure 3.1: Cluster dendrogram and final observation weights of PH dataset 

 

Other competing regression methods are applied to the PH dataset and the corresponding 

estimates are given by Table 3.2. 
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Table 3.2: Robust analysis of parameter estimate summary of PH dataset 

Parameter OLS LTS S1S REWLS BI CBI OLS without 

outliers 

Intercept 

𝑋1 

𝑋2 

𝑋3 

8.205 

3.560 

-1.640 

0.334 

10.961 

3.384 

-1.712 

0.483 

40.96 

1.974 

-2.538 

-0.781 

8.931 

3.523 

-1.697 

0.4337 

17.954 

3.120 

-1.971 

0.052 

25.615 

2.719 

-2.136 

-0.196 

24.270 

2.791 

-2.112 

-0.156 

 

The estimated coefficients resulting from the different estimation methods described in Section 1 

for the PH data reveal some interesting results, especially as they relate to the CBI algorithm. 

First, it is seen that the BI estimator has coefficient estimates very close to the true parameter 

vector. The CBI estimator began with estimates based on the final main cluster and then 

improved upon them through the minor cluster activation process. It is interesting to note that the 

estimated coefficients using the OLS method for the 22 good observations is nearly identical to 

those obtained by the CBI method. Thus, the CBI estimator is actually closer to the observed 

trend of the data than is the BI estimator.  

 

We note that the PH data had no troublesome jointly influential observations. Consider next the 

HBK data which has a cluster of ten hips (as observations 1 through 10) and another cluster of 

four good high leverage points (observations 11 through 14). Since the true parameters were not 

reported by Hawkins et al.17, the goal in analyzing this dataset was to ascertain the ability of the 

robust methods to distinguish between the outliers and the non-outliers occurring at the high 

leverage points. 

 

The CBI method applied to the HBK data resulted in a weight for each observation (Figure 3.2). 

Figure 3.2 shows that the first ten observations received zero weight, the ideal case. The four 

good leverage observations, on the other hand, all have weights greater than zero, as they should 

be; especially the observations 11, 12 and 14 received very high weights each close to 1.  



 
Figure 3.2: The final CBI regression observation weights of HBK dataset 

The final CBI fitted equation is 

𝑦�𝑖 = −0.224 + 0.097  𝑥1𝑖 + 0.045𝑥2𝑖 − 0.064𝑥3𝑖 . 

 

A summary of the CBI regression analysis is provided as Table 3.3. 

Table 3.3: CBI analysis of parameter estimate summaryof HBK dataset 

Parameter Estimate  

Parameter Estimate Sd.Error t P -value 

intercept −0.224 0.169 −1.326 0.190 

𝑋1 0.097 0.107 0.901 0.371 

𝑋2 0.045 0.061 0.736 0.464 

𝑋3 −0.064 0.055 −1.165 0.249 

Scale  𝜎�𝐶𝐵𝐼 = 0.867    𝑣� = 0.890 𝑣�𝑤 = 0.646 

 

A comparison of the CBI results to other competing regression methods is given in Table 3.4. It 

is seen that the REWLS estimate provide the same result as the OLS estimate without hips, this 

result is not surprising because the REWLS method took advantage of the fact that the hips in 

this case have larger residuals as determined by its initial LTS estimate. The CBI estimates, 

while not identical, are very close to the OLS estimates based on the good data points.  
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Table 3.4: Robust analysis of parameter estimate summary of HBK dataset 

Parameter OLS LTS S1S REWLS BI CBI OLS without 

hips 

Intercept 

X1 

X2 

X3 

-0.388 

0.239 

-0.335 

0.383 

-0.612 

0.255 

0.048 

 -0.106 

-0.004 

0.041 

0.021 

-0.082 

-0.180 

0.081 

0.039 

-0.051 

-0.934 

0.144 

0.192 

0.184 

-0.224  

0.097 

0.045 

-0.064 

-0.180 

0.081 

0.039 

-0.051 

 

The CBI estimates are close to the trend of the data for both case studies and the weight plots 

also show that it can correctly identify the outliers and hips for the case studies considered here. 

Results from a small Monte Carlo study are presented in the next section to further evaluate the 

ability if the competing regression methods to detect multiple outliers, especially those occurring 

at high leverage points.  

 

4. Monte Carlo  Study  

In this Monte Carlo study, the simulated dataset utilized the original regressor values of the HBK 

dataset, but generated a new response vector while maintaining observations 1 through 10 as a 

high influence cluster. Specifically, the 𝑛 = 75 observations were generated by the linear model 

𝑦𝑖 = �𝜀𝑖,                                                   𝑖 ∈
(1: 10)

0.2 − 0.15𝑥1𝑖 + 0.1𝑥3𝑖 + 𝜀𝑖,   𝑖 ∉ (1: 10). 

With the random errors generated from the following distributions 

𝜀𝑖~ � 𝑁
(𝜇 = 10,𝜎2 = 0.3852), 𝑖 ∈ (1: 10)

  𝑁(𝜇 = 0,𝜎2 = 0.52),          𝑖 ∉ (1: 10). 

The results of this Monte Carlo study are provided in Table 4.1. Here, the parameters to be 

estimated are 𝜷𝑇 = (0.2 − 0.15  0.1) and 𝜎𝜀2 = 0.25. The number of Monte Carlo repetitions 

was 2000.  

 

 

 

 



 Table 4.1: Simulation results for Monte Carlo study (The crossed cells are not applicable) 

 OLS LTS S1S REWLS BI CBI 

 

E��𝛃�� 

0.029 −0.104 0.209 −0.105 −0.424 0.218 

−0.019 −0.122 −0.156 −0.125 −0.090 −0.147 

−0.307 0.069 −0.005 0.063 0.119 −0.006 

0.456 0.188 0.105 0.189 0.295 0.093 

𝐸�[𝜎�2] 3.478 0.363  0.312 0.358 0.329 𝐸��𝑣�𝑤
2� 

𝐸�[𝑣�2]     0.016 0.469 0.276 

 

E��se[𝛃�]� 

0.345  0.211 0.114 0.024 0.177 0.141 

0.217  0.075 0.069 0.015 0.095 0.076 

0.128  0.073 0.053 0.013 0.073 0.057 

0.107  0.074 0.042 0.009 0.065 0.051 

 

 

 

 

 

𝛃� 

Range 

      Min 

      Max  

IQR 

0.689  

       −0.310 

           0.379 

0.127  

2.333   

          −1.168 

            1.165 

0.665 

2.316         

      −0.570 

   1.746 

0.298 

1.848  

    −1.077 

           0.7 

0.630 

0.619 

   −0.735 

   −0.115 

0.080 

1.903          

        −0.759  

         1.144  

0.189 

0.401      

       −0.223 

          0.179  

0.078 

0.977       

       −0.597 

          0.329 

0.192 

1.066  

    −0.693 

           0.373 

0.094 

0.660  

    −0.372 

           0.373 

0.111 

0.354     

    −0.251  

       0.102  

0.080 

0.642      

       −0.466  

          0.176 

0.090 

0.235  

       −0.423 

       −0.188       

0.046 

0.901       

        −0.400  

            0.501 

0.183 

0.869      

       −0.473  

          0.396  

0.102 

0.556  

    −0.137 

           0.419 

0.125 

0.264                        

          0.141 

          0.405  

0.048 

0.637      

       −0.307  

          0.329  

0.083 

0.202          

         0.364  

         0.566  

0.039 

1.019          

       −0.313  

          0.706 

0.193 

0.945                       

       −0.549  

           0.396 

0.113 

0.504  

    −0.029 

           0.475 

0.193 

0.265          

       −0.405  

          0.140 

0.005 

0.543     

       −0.198  

          0.345 

0.073 

 

According to the characteristics of the estimators in Table 4.1, it is seen that CBI estimator had 

overall better performance. For example, consider 𝐸��𝜷�� , the simulated expected coefficient 



vector for each estimation method. We see that S1S and CBI were similar, with little exhibited 

bias. LTS and REWLS, on the other hand, were very close to each other, demonstrated a 

moderate bias. OLS and BI were severely biased as expected. All simulated scale estimates, 

𝐸�[𝜎�2], overestimated, on the average, the true scale parameter of 0.25. On the other hand, the 

simulated robust scale estimate, 𝐸�[𝑣�2] for the BI procedure severely underestimated the scale 

parameter. This led to the smallest expected standard errors of the BI coefficients, results based 

on the average of the simulated coefficient standard errors using the average square root of the 

diagonal value of  𝑣�2 ∗ (𝑿𝑇𝑾𝑿)−1 matrix. Among the scale estimates, the robust scale estimate 

based on the effective sample size, 𝑣�𝑤
2, for the CBI procedure had the smallest bias, on the 

average. 

 

Between CBI and S1S, the CBI coefficients had the smaller standard error and were more stable, 

both in terms of the observed range as well as with respect to the IQR. The REWLS improved 

the stability of LTS and had smaller standard error for its coefficients. Both OLS and BI 

exhibited very tight distributions for each of the four coefficients was of little consequence given 

the extreme bias that was exhibited. 

 
The average observation weights are denoted as 𝒘� , and the standardized average weight 𝑤𝑠����𝑖 is 

defined as  

𝑤𝑠����𝑖 =
𝑤�𝑖 − 𝑀𝑖𝑛(𝒘�)

𝑀𝑎𝑥(𝒘�) −𝑀𝑖𝑛(𝒘�)
 . 

Table 4.2: Standardized average weight for observations 1-14 

Observation REWLS BI CBI Observation REWLS BI CBI 

1 0.014 0.971 0.002 8 0.096 0.981 0.000 

2 0.144 0.991 0.002 9 0.131 0.985 0.004 

3 0.159 0.991 0.005 10 0.186 0.992 0.006 

4 0.000 0.964 0.001 11 0.243 0.000 0.614 

5 0.107 0.987 0.005 12 0.243 0.000 0.533 

6 0.132 0.986 0.002 13 0.248 0.000 0.677 

7 0.152 0.990 0.003 14 0.231 0.000 0.646 



Considering the result in Table 4.2, the CBI, on average, was more likely to identify the hips. For 

example, it gave almost 0 weights on the average to all the hips and weights greater than 0.5 to 

all the good leverage points. The REWLS, ended with the low weights to all the bad and good 

leverage points. The BI, on the other hand, mistakenly attributed the weights, provided very high 

weight for the first ten bad leverage points and 0 weights for the four good leverage points. 

 

5. Conclusions  

The proposed CBI methodology is a comprehensive regression analysis procedure. The goal is to 

be competitive with methods such as LTS (Ruppert and Carroll4), S1S (Coakley and 

Hettmansperger6) and REWLS (Gervini and Yohai8) when the data is highly contaminated but 

also be able to compete with the efficient M and BI regression methods (Huber and Ronchetti2) 

when the data has few or no problematic observations. Specifically, the first case study shows 

that the CBI outperformed the other high breakdown procedures under the low contamination 

situation. The Monte Carlo study, on the other hand, shows that the CBI is one of the two 

procedures (S1S and CBI) that provide unbiased regression coefficients. Between the unbiased 

procedures, the CBI has the smaller standard errors of the regression coefficients and has more 

stable of the coefficient estimates.  

 

Further, that the user can rely on the CBI method to perform well across the spectrum of data 

contamination levels is an advantage, especially when the user may not be aware of the finer 

details of robust regression. Additionally, the CBI methodology provides valuable insight into 

the data structure, identifying multiple outliers or subgroups of similar observations. With a 

dendrogram illustrating the cluster history, a minor cluster activation summary and a final CBI 

regression estimator, scale estimate and observation weights, a CBI regression analysis provides 

an extensive amount of information in a compact tabular and graphical summary form. 

 

All numerical results in this work were programmed using R and the programs are available 

from the authors upon request. The CBI algorithm is surprisingly fast. For example, the CBI 

algorithm for the case study required a few seconds using a moderately equipped PC. 

 

 



Appendix A-1 

Both the M and BI regression procedures have altered normal equations that involve a  𝜓 

function. This 𝜓 function dictates some robustness properties of the estimator. For example, 

𝜓 determines whether to downweight or bound a large value of its argument, which generally 

involves a rescaled residual. One possible choice is the Huber 𝜓 function, defined as 

𝜓(𝑡) = �
−𝑐𝐻            𝑡 < −𝑐𝐻
𝑡    − 𝑐𝐻 ≤ 𝑡 ≤ 𝑐𝐻
𝑐𝐻                𝑡 > 𝑐𝐻

, 

where 𝑐𝐻 is some constant (often referred to as the tuning parameter). To attain 95% efficiency 

for the location model under normally distributed errors, 𝑐𝐻 is set to 1.345.  

 

Another frequently used choice for  𝜓 is the bisquare  𝜓 function, defined as 

𝜓(𝑡) = �𝑡(1 − (𝑡 𝑐𝐵⁄ )2)2, 𝑡 < |𝑐𝐵|
0,                             𝑡 ≥ |𝑐𝐵|. 

The tuning parameter 𝑐𝐵 is given the value of 4.685 to achieve 95% efficiency under normally 

distributed errors for the location model. However, for BI regression it is generally preferred to 

incorporate the correction factor 𝑐 = �2𝑝𝑛 (𝑛 − 2𝑝)�  to account for the presence of  𝜋𝑖 in the 𝜓 

function argument that is used to produce the BI estimator (Walker18, Birch and Agard15). In this 

case, the Huber and the bisquare 𝜓  functions use ( )1.345 2 2Hc pn n p = − and  𝑐𝐵 =

4.685 �2𝑝𝑛 (𝑛 − 2𝑝)�  respectively. More choices for the  𝜓 function are provided by Wilcox19.  

 

Appendix A-2 

Computationally, S1S requires two inputs: (1) 𝜷�0, the initial LTS estimator, and (2) the 𝑛 × 1 

vector of Mallows weights, whose elements, 𝑅𝐷𝑖 , are determined via 

𝑅𝐷𝑖 = (𝒛𝑖 −𝑴𝑽𝑬1(𝒁))𝑇(𝑴𝑽𝑬2(𝒁))−1(𝒛𝑖 − 𝑴𝑽𝑬1(𝒁)) , where 𝑴𝑽𝑬1(𝒁) is the 𝑘 × 1 mean 

vector and 𝑴𝑽𝑬2(𝒁)  is the 𝑘 × 𝑘 covariance matrix based on minimum volume ellipsoid 

estimation (see Rousseeuw and Leroy12) and utilizing only the regressor space. 

 

Regarding the 1-step improvement, 𝑟𝑖�𝜷�0� = 𝑦𝑖 − 𝒙𝑖𝑇𝜷�0  is the 𝑖𝑡ℎ  initial residual, the robust 

scale estimate 𝜎�0 (Rousseeuw and Leroy12) is 



𝜎�0 = 1.4826 �1 +
5

𝑛 − 𝑝
�med

∀𝑖
�𝑟𝑖�𝜷�0��. 

The diagonal matrix 𝑾 has diagonal elements 

𝑤𝑖 = 𝑚𝑖𝑛 �1, �
𝜒0.975,𝑝−1
2

𝑅𝐷𝑖
��, 

And the diagonal matrix 𝑩  is defined as 𝑩 = 𝑑𝑖𝑎𝑔 �𝜓(1) �𝑟𝑖(𝜷
�0)

𝜎�0𝑤𝑖
�� ,where 𝜓(1) is the first 

derivative of  𝜓. 

 

Appendix A-3 

To obtain 𝑁, first define 𝐺 as the distribution function of the absolute scaled errors under the 

normal model. That is  

𝐺(𝑡) = 2Φ(t)− 1,  

where Φ(t) is the cumulative standard normal distribution. 

Let 𝑟𝑠(1) < 𝑟𝑠(2) … ≤ 𝑟𝑠(𝑛) denote the order statistic of the absolute scaled residual and define  

𝑖0 = 𝑚𝑎𝑥�𝑖: 𝑟𝑠(𝑖) < 𝜂, 𝑖 = 1, …𝑛�, 

where 𝜂 = 𝐺−1(𝛾) and 𝛾 is a large value such as 𝛾 = 0.95. Define  

𝑞 = min
𝑖>𝑖0

�
𝑖 − 1
𝐺(𝑟𝑠(𝑖))

�, 

and 

𝑁 = [𝑞]. 

Essentially, this procedure would delete those observations with 𝑟𝑠(𝑖) values well above the 

identity line in a normal Q-Q plot of  𝑟𝑠(𝑖) against the respective quantiles of 𝐺 . 
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