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Abstract

The Poisson binomial distribution is the distribution of the sum of independent and

non-identical random indicators. Each indicator follows a Bernoulli distribution with

individual success probability. When all success probabilities are equal, the Poisson bi-

nomial distribution is a binomial distribution. The Poisson binomial distribution has

many applications in different areas such as reliability, survival analysis, survey sampling,

econometrics, etc. The computing of the cumulative distribution function (cdf) of the

Poisson binomial distribution, however, is not straightforward. Approximation methods

such as the Poisson approximation and normal approximations have been used in litera-

ture. Recursive formulae also have been used to compute the cdf in some areas. In this

paper, we present a simple derivation for an exact formula with a closed-form expression

for the cdf of the Poisson binomial distribution. The derivation uses the discrete Fourier

transform of the characteristic function of the distribution. We develop an algorithm

for efficient implementation of the exact formula. Numerical studies were conducted

to study the accuracy of the developed algorithm and the accuracy of approximation

methods. We also studied the computational efficiency of different methods. The paper

is concluded with a discussion on the use of different methods in practice and some

suggestions for practitioners.

Key Words: Characteristic function; Discrete Fourier transform; k-out-of-n system;

Normal approximation; Poisson binomial distribution; Warranty returns.
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1 Introduction

1.1 Motivation

The Poisson binomial distribution describes the distribution of the sum of independent and

non-identical random indicators. Each indicator is a Bernoulli random variable with individ-

ual success probability. A special case of the Poisson binomial distribution is when all success

probabilities are equal. In this case, the Poisson binomial distribution is a binomial distri-

bution. The Poisson binomial distribution has many applications in different areas such as

reliability, survival analysis, survey sampling, econometrics, and so on. For example, in some

reliability applications, it is often of interest to predict the total number of failures for a fleet

of products in the field. Hong, Meeker, and McCalley (2009) considered the prediction for the

total number of field failures for a fleet of high-voltage power transformers. Due to staggered

entry of units into service, individual units in the field have different failure probabilities at

a specified future time. Thus the total number of field failures follows a Poisson binomial

distribution. In econometrics, it is sometimes of interest to predict the number of corporation

defaults (Duffie, Saita, and Wang 2007). The default probabilities differ from corporation to

corporation because each corporation has its unique situation such as assets, debts and stock

returns. The number of corporation defaults at a future time also follows a Poisson binomial

distribution. Chen and Liu (1997) presented an example on survey sampling where each sam-

pling unit has different probabilities to be included in the sample. Fernández and Williams

(2010) provided more examples from areas such as pattern identification, multi-sensor fusion,

and reliability of k-out-of-n systems.

While the Poisson binomial distribution has many applications, the computing of the

cumulative distribution function (cdf) of the distribution is not straightforward. Because

each indicator has different success probabilities, the naive way of computing the cdf by using

enumeration is not practicable, even when the number of indicators is small (i.e., around

30). Approximation methods such as the Poisson approximation and normal approximations

have been used in literature. There are situations, however, in which approximation methods

do not perform well. Thus it is desirable to have a method to compute the exact values

of the cdf. It is also useful to know in which situation approximation methods work well.

In applications such as predictions for the number of failures and corporation defaults, the

number of indicators is usually large. Thus efficiency of algorithms for computing the exact

values of the cdf is also important. This motivates us to provide efficient methods to compute

the exact values of the cdf of the Poisson binomial distribution.
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1.2 Related Literature and This Work

The study on Poisson binomial distribution has a long history. Le Cam (1960) provided an

upper bound for the error of the Poisson approximation. Normal approximations are widely

used in practice. Volkova (1996) gave a normal approximation with second order correction

and provided an upper bound for the error of the approximation. Hong, Meeker, and McCalley

(2009) and Hong and Meeker (2010) applied the approximation in Volkova (1996) to warranty

prediction applications. Recursive formulae are available in literature to compute the exact

values of the cdf of the Poisson binomial distribution. For example, Barlow and Heidtmann

(1984) described a recursive formula for computing the cdf. Chen, Dempster, and Liu (1994)

provided another recursive formula. Details for these recursive formulae are described in

Section 2.5. Fernández and Williams (2010) gave a closed-form expression for the cdf using

the technique of polynomial interpolation and the discrete Fourier transform.

In this paper, we present a simple derivation for an exact formula for the cdf of the

Poisson binomial distribution, which gives the same form as in Fernández and Williams (2010).

We develop an algorithm that efficiently implements the exact formula. Numerical studies

were conducted to compare the accuracy of the algorithm and the accuracy of approximation

methods. We also compared the computational efficiency of different methods. Based on the

numerical studies, we provide a discussion on the advantages and disadvantages of different

methods and some guidelines for practitioners.

The statistical software R (2011) is widely used and it is free. There is no package, how-

ever, for computing the Poisson binomial distribution function. We developed an R package

that efficiently implements both exact methods and approximation methods and it can be

downloaded from the R website. See Section 5 for more details.

1.3 Overview

The rest of the paper is organized as follows. Section 2 describes several exact methods for

computing the cdf and algorithms for their efficient implementations. Section 3 describes

several approximation methods based on the Poisson and normal approximations. Section 4

conducts a comprehensive numerical studies to assess the performance of various methods

in terms of accuracy and efficiency. Section 5 discusses software implementation for both

the exact and approximation methods. Section 6 provides some concluding remarks and

suggestions for practitioners.
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2 Exact Methods

2.1 Notation

Let Ij, j = 1, . . . , n be a series of n random indicators. Each indicator is independent and

follows

Ij ∼ Bernoulli(pj), j = 1, . . . , n (1)

where pj = Pr(Ij = 1) is the success probability for indicator Ij and not all pj’s are equal. The

Poisson binomial random variable N is defined as the sum of independent and non-identical

random indicators. That is N =
∑n

j=1 Ij and N takes value in {0, 1, . . . , n}.
Let ξk = Pr(N = k), k = 0, 1, . . . , n be the probability mass function (pmf) for the Poisson

binomial random variable N . When all pj’s are identical, the distribution of N is a binomial

distribution. The cdf of N , denoted by FN(k) = Pr(N ≤ k), k = 0, 1, . . . , n, gives the

probability of having at least k successes out of a total of n. The cdf FN(k) can be expressed

by (Wang 1993)

FN(k) =
k∑

m=0

ξm =
k∑

m=0

{∑
A∈Fm

∏
j∈A

pj
∏
j∈Ac

(1− pj)

}
(2)

where Fm is the set of all subsets of m integers that can be selected from {1, 2, 3, . . . , n} and

Ac is the complement of set A (i.e., Ac = {1, 2, 3, . . . , n} \ A). The computing of FN(k) in

(2) by enumerating all elements in Fm is not practicable, even when n is small (e.g., n = 30).

Thus computationally efficient methods are desirable.

2.2 Discrete Fourier Transform

In this section, we give a brief introduction to the discrete Fourier transform (DFT). For a

sequence of n+1 complex numbers {y0, y1, · · · , yn}, the DFT transforms {y0, y1, · · · , yn} into

a sequence of n+ 1 complex numbers {z0, z1, · · · , zn} where

zk =
n∑

l=0

yl exp(−iωkl), k = 0, 1, . . . , n

and ω = 2π/(n+1). The inverse discrete Fourier transform (IDFT), which recovers {y0, y1, · · · ,
yn} from {z0, z1, · · · , zn}, is given by

yl =
1

n+ 1

n∑
k=0

zk exp(iωlk), l = 0, 1, · · · , n. (3)
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Applying the DFT to both sides of equation (3), one can also recover {z0, z1, · · · , zn} from

{y0, y1, · · · , yn}. More details on the DFT can be found in Bracewell (2000, Chapter 11).

There are fast Fourier transform (FFT) algorithms to efficiently compute the DFT. The

most commonly-used algorithm is the Cooley-Tukey algorithm (Cooley and Tukey 1965).

There are also subroutines available in C or FORTRAN that implement FFT algorithms. See

Bracewell (2000, Chapter 11) for details on FFT algorithms.

2.3 The DFT of the Characteristic Function

Fernández and Williams (2010) provided a closed-form expression for FN(k) which was derived

by using polynomial interpolation technique and the DFT. In this paper, we present a simpler

derivation, based on the characteristic function (CF) for random variables (see, for example,

Athreya and Lahiri 2006, Chapter 10). The CF of N =
∑n

j=1 Ij is

φ(t) = E[exp(itN)] =
n∑

k=0

ξk exp(itk) = E

[
exp

(
it

n∑
j=1

Ij

)]
(4)

=
n∏

j=1

E[exp(itIj)] =
n∏

j=1

[1− pj + pj exp(it)],

where i =
√
−1. Substituting t = ωl, l = 0, 1, · · · , n into (4) where ω = 2π/(n + 1), one

obtains

1

n+ 1

n∑
k=0

ξk exp(iωlk) =
1

n+ 1

n∏
j=1

[1− pj + pj exp(iωl)] =
1

n+ 1
xl, l = 0, 1, · · · , n, (5)

where xl =
∏n

j=1[1−pj+pj exp(iωl)]. Note that the left hand side of equation (5) is the IDFT

of the sequence {ξ0, ξ1, · · · , ξn}. Apply the DFT to both sides of equation (5), one recovers

{ξ0, ξ1, · · · , ξn}. In particular,

ξk =
1

n+ 1

n∑
l=0

exp(−iωlk)
n∏

j=1

[1− pj + pj exp(iωl)] =
1

n+ 1

n∑
l=0

exp(−iωlk)xl. (6)

The expression in equation (6) gives the same closed-form expression as in Fernández and

Williams (2010). From (6), the cdf of N can be expressed as

FN(k) =
k∑

m=0

ξm =
1

n+ 1

n∑
l=0

k∑
m=0

exp(−iωlm)xl =
1

n+ 1

n∑
l=0

{1− exp[−iωl(k + 1)]}xl

1− exp(−iωl)
. (7)

The last equality in (7) follows from the fact that exp(−iωlm),m = 0, 1, . . . , k is a geometric

sequence. We refer to the closed-form expression in (7) for FN(k) as the DFT-CF method.
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2.4 Efficient Implementation of the DFT-CF Method

In this section, we describe details on efficient implementation for computing the cdf FN(k)

in (7). To compute ξk, k = 0, 1, . . . , n, one first needs to compute xl. Let xl = al + ibl, l =

0, 1, . . . , n, where al and bl are the real and imaginary parts of xl, respectively. From (5),

xl =
∑n

k=0 ξk exp(iωlk), l = 0, 1, · · · , n. Note that x0 =
∑n

k=0 ξk = 1. Because all ξk’s are real

numbers and exp[iω(n+ 1)k] = 1, the conjugate of xl is

xl = al − ibl =
n∑

k=0

ξk exp(−iωlk) =
n∑

k=0

ξk exp[iω(n+ 1− l)k]

= xn+1−l = an+1−l + ibn+1−l, l = 1, . . . , n.

Thus al = an+1−l, and bl = −bn+1−l for l = 1, . . . , n. Let zj(l) = 1−pj+pj cos(ωl)+ipj sin(ωl),

|zj(l)| be the modulus of zj(l), and Arg[zj(l)] be the principal value of the argument of zj(l).

Note that

xl = exp

{
n∑

j=1

log [zj(l)]

}
= exp

{
n∑

j=1

log

(
|zj(l)| exp{iArg[zj(l)]}

)}

= exp

{
n∑

j=1

log [ |zj(l)| ]

}
exp

(
i

n∑
j=1

Arg[zj(l)]

)

= exp

{
n∑

j=1

log [ |zj(l)| ]

}(
cos

{
n∑

j=1

Arg[zj(l)]

}
+ i sin

{
n∑

j=1

Arg[zj(l)]

})
.

Here |zj(l)| = {[1 − pj + pj cos(ωl)]
2 + [pj sin(ωl)]

2}1/2 and Arg[zj(l)] = atan2[pj sin(ωl), 1 −
pj + pj cos(ωl)]. The function atan2(y, x) is defined as

atan2(y, x) =



arctan( y
x
) x > 0

π + arctan( y
x
) y ≥ 0, x < 0

−π + arctan( y
x
) y < 0, x < 0

π
2

y > 0, x = 0

−π
2

y < 0, x = 0

0 y = 0, x = 0

.

Thus explicit expressions for al and bl are

al = dl cos

{
n∑

j=1

Arg[zj(l)]

}
and bl = dl sin

{
n∑

j=1

Arg[zj(l)]

}
(8)

where dl = exp
{∑n

j=1 log [ |zj(l)| ]
}
, l = 1, . . . , n. The following algorithm is used to compute

the cdf FN(k) for k = 0, 1, · · · , n.
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Algorithm A:

1. Let x0 = 1. For l = 1, . . . [n/2], compute the real and imaginary parts of xl by using the

formulae in (8). Here [ · ] is the ceiling function.

2. For l = [n/2]+1, . . . , n, compute the real and imaginary parts of xl by using the formula

al = an+1−l, and bl = −bn+1−l.

3. Apply the FFT algorithm to the set {x0/(n+ 1), x1/(n+ 1), . . . , xn/(n+ 1)} to obtain

{ξ0, ξ1, . . . , ξn}.

4. Compute the cdf by using FN(k) =
∑k

m=0 ξm, k = 0, 1, · · · , n.

The above algorithm returns the entire cdf by doing the FFT once. Because there are C or

FORTRAN subroutines available to do the FFT, the implementation of Algorithm A is

not difficult. The FFT algorithm that is used for the implementation in this paper is due

to Singleton (1969), which is an FFT algorithm based on the Cooley-Tukey algorithm. The

original subroutine was written in FORTRAN. It was translated to C and was included in the

R library.

2.5 Recursive Formulae

Recursive formulae (RF) are available in literature to compute FN(k). Barlow and Heidtmann

(1984) described the following recursive formula. A better description of the algorithm is

available in Kuo and Zuo (2003, Chapter 7). Let Nj =
∑j

m=1 Im and ξk,j = Pr(Nj = k) where

the random indicator Im is defined in (1). Note that N = Nn and ξk = ξk,n. The recursive

formula is given by

ξk,j = (1− pj)ξk,j−1 + pjξk−1,j−1, 0 ≤ k ≤ n, 0 ≤ j ≤ n. (9)

The boundary conditions for (9) are ξ−1,j = ξj+1,j = 0, j = 0, 1, . . . , n − 1 and ξ0,0 = 1. We

refer to (9) as the RF1 method.

Chen, Dempster, and Liu (1994) introduced another recursive formula for computing ξk.

The algorithm requires all pj < 1. In particular, the formula is given by

ξ0 =
n∏

j=1

(1− pj), and ξk =
1

k

k∑
l=1

(−1)l−1tlξk−l, k = 1, . . . , n (10)

where tl =
∑n

j=1[pj/(1−pj)]
l. We refer to (10) as the RF2 method. This formula is sometimes

not numerically stable. This is caused by round-off error in ξ0 and the explosion of the term

[pj/(1− pj)]
l in tl, especially when pj is close to 1 and n is large.
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3 Approximation Methods

In this section, we describe several commonly-used approximation methods for computing

the cdf FN(k). Approximation methods are still widely used because of their computational

efficiency, especially when n is large and the cdf FN(k) needs to be evaluated many times. For

example, in the prediction application in Hong, Meeker, and McCalley (2009), the cdf needs

to be evaluated B = 10,000 times in the calibration of prediction intervals for the number of

field failures. We will need moments or functions of moments of N in the description of ap-

proximation methods. The expectation, standard deviation, and skewness of the distribution

of N are

µ = E(N) =
n∑

j=1

pj, σ = [Var(N)]1/2 =

[
n∑

j=1

pj(1− pj)

]1/2
, (11)

γ = [Var(N)]−3/2E [N − µ]3 = σ−3

n∑
j=1

pj(1− pj)(1− 2pj),

respectively.

3.1 Poisson Approximation

In literature, the Poisson distribution has been used to approximate the distribution of N ,

which is referred to as the Poisson approximation (PA) method. In particular, the pmf the

Poisson binomial distribution ξk is approximated by

ξk ≈
µk exp(−µ)

k!
, k = 0, 1, · · · , n (12)

where µ is defined in (11). By Le Cam’s theorem (Le Cam 1960), the approximation error for

the PA method is
∑n

k=0

∣∣ξk − µk exp(−µ)/(k!)
∣∣ < 2

∑n
j=1 p

2
j . Thus the PA method only works

well when the expected number of successes µ is small.

3.2 Normal Approximation

The normal approximation (NA) method is based on the central limit theorem. In particu-

lar, the NA method with continuous correction approximates the cdf of a Poisson binomial

distribution by

FN(k) ≈ Φ

(
k + 0.5− µ

σ

)
, k = 0, 1, · · · , n (13)

where Φ(x) is the cdf of the standard normal distribution, and µ and σ are defined in (11).
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3.3 Refined Normal Approximation

Volkova (1996) described a refined normal approximation (RNA) which makes a correction to

the skewness of the distribution of N . For the RNA method, the cdf FN(k) is approximated

by

FN(k) ≈ G

(
k + 0.5− µ

σ

)
, k = 0, 1, · · · , n (14)

where G(x) = Φ(x) + γ(1 − x2)ϕ(x)/6, ϕ(x) is the pdf of the standard normal distribution,

and γ is defined in (11). The values of the cdf approximated by the RNA method are not

always within [0, 1]. Thus those values less than 0 are corrected to 0 and those values larger

than 1 are corrected to 1.

4 Numerical Studies

4.1 Accuracy of Exact Methods

In this section, we use the distribution function of the binomial distribution to verify the

accuracy of algorithms using the DFT-CF, RF1 and RF2 methods. The pmf of a binomial

distribution can be easily computed by using existing software. Note that the distribution of

the sum of three independent and non-identical binomial distributions is a special case of the

Poisson binomial distribution. The pmf in this special case is

ξk =
k∑

j=0

bk−j,n3

(
j∑

i=0

bi,n1bj−i,n2

)
=

k∑
j=0

j∑
i=0

bi,n1bj−i,n2bk−j,n3 (15)

where n1+n2+n3 = n, and bi,n1 , bi,n2 and bi,n3 are the pmfs of Binomial(n1, p1), Binomial(n2, p2)

and Binomial(n3, p3), respectively. Here p1, p2 and p3 are the success probabilities for these

three binomial distributions. The pmfs bi,n1 , bi,n2 and bi,n3 can be accurately computed by

using existing software. With different values of n1, n2, n3 and p1, p2, p3, one can obtain various

Poisson binomial distributions. We use the total absolute error (TAE) between two cdfs as a

metric for accuracy comparisons. The TAE is defined by

TAE =
n∑

k=0

|F (k)− Fbin(k)|

where F (k) is a cdf computed by using one of the exact methods, and Fbin(k) is the cdf

computed by using the formula in (15). Table 1 shows the results from the accuracy study for

the DFT-CF, RF1 and RF2 methods. Various values of n1, n2, n3 and p1, p2, p3 were chosen

to generate different scenarios and the TAE for each scenario was computed. The TAEs

9



Table 1: Accuracy comparisons for the DFT-CF, RF1 and RF2 methods.

n n1 n2 n3 p1 p2 p3
TAE

DFT-CF RF1 RF2
30 10 10 10 0.500 0.500 0.500 1.6×10−14 7.4×10−15 7.4×10−15

30 10 5 15 0.500 0.500 0.500 1.3×10−14 5.2×10−15 5.2×10−15

30 10 5 15 0.010 0.500 0.990 1.4×10−14 7.0×10−16 na
300 100 50 150 0.010 0.500 0.990 1.9×10−12 4.7×10−14 na

3,000 1,000 500 1,500 0.010 0.500 0.990 3.6×10−10 1.1×10−11 na
3,000 1,000 500 1,500 0.001 0.010 0.020 3.1×10−11 9.4×10−11 1.6×10−10

3,000 1,000 500 1,500 0.999 0.990 0.980 1.4×10−09 1.1×10−14 na
3,000 1,000 500 1,500 0.001 0.500 0.999 3.4×10−10 7.2×10−12 na
3,000 1,000 500 1,500 0.300 0.500 0.700 3.8×10−10 7.7×10−11 na

are generally less than 1×10−10 for the DFT-CF and RF1 methods. Thus the results show

that the DFT-CF and RF1 methods can accurately compute the cdf for the Poisson binomial

distribution. The RF2 method does not work for most cases because the algorithm is not

numerically stable.

4.2 Accuracy Comparisons for Approximation Methods

Being able to compute the exact values of the cdf FN(k) allows us to study the perfor-

mance of approximation methods. To see the performance of different approximation meth-

ods, we simulate success probabilities pj’s from various patterns. Figure 1 shows the six

different patterns in pj’s used in this numerical study. These patterns in the pj’s are sim-

ulated from the uniform distribution, beta distribution with various values of scale and

shape parameters, and mixtures of beta distributions. For each pattern, various values of

n, which is the number of random indicators in N , were chosen to see the effect of n on

the accuracy of approximation methods. In particular, the values of n were chosen from

n = 10, 20, 50, 100, 200, 500, 1,000, 2,000, 5,000, 10,000, 15,000.

Figure 2 shows an illustration of computed cdfs from various methods for Pattern (b) in

Figure 1 when n = 200. The x-axis is on the logarithm scale and the y-axis is on the scale of

the quantile function of the standard normal distribution. The RNA method approximates

the cdf well and the NA method approximates the cdf moderate well (there are departures

in the upper and lower tails of the cdf). The cdf computed by the PA method deviates from

the true cdf. Thus the PA method does not perform well. The RF1 method gives exactly the

same values (agree to the ninth decimal places) as the DFT-CF method. The RF2 method

does not work because it is not numerically stable. Thus the results for recursive formulae are
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not shown in Figure 2.

Table 2 shows the accuracy comparison for different methods under various patterns in

pj’s and values of n. The TAE is used as a metric for comparisons, which is computed by

TAE =
n∑

k=0

|F (k)− FN(k)|

where F (k) is a cdf computed by using one of the approximation methods, and FN(k) is the

cdf computed by using the DFT-CF method. As we can see from the results in Table 2, the

PA method does not perform well for most cases. The PA method only works reasonable well

when µ is small, for example in Pattern (b) when n ≤ 50.

For the normal approximation methods, the RNA method performs better than the NA

method for almost all cases. For Patterns (b) and (c) where N is highly skewed, the RNA

method performs much better than the NA method. When n ≥ 2000, the TAE for the

RNA method is generally less than 0.005. Thus the RNA method is recommended when an

approximation method needs to be used.

For all combinations of patterns in the pj’s and values of n considered in Table 2, both the

DFT-CF and RF1 methods provide results that agree to the ninth decimal places. The RF2

method, however, does not work for most cases for the same reason mentioned previously.

Thus the results for the RF1 and RF2 methods are not shown in Table 2.

4.3 Efficiency Comparisons for Exact Methods

The computing time for the exact and approximation methods needs to be considered when n

is large. Table 3 gives the time for computing the entire cdf using the RNA, DFT-CF and RF1

methods for all combinations of patterns in the pj’s and values of n as in Section 4.2. The unit

of time is the second. The computations were done by using the 64-bit R in a workstation.

The workstation has an Intel Xeon CPU (X5570, 2.93GHz) and 24G RAM installed.

The results in Table 3 show that the computing time for the RNA method is generally

negligible (less than four milliseconds). The computing time for both the DFT-CF and RF1

methods are generally negligible (less than ten milliseconds) when n ≤ 500. When n ≥ 1,000,

the RF1 method requires more computing time than the DFT-CF method. The RF1 method

also requires more RAM. For example, when n = 15,000, approximately 4GB memory is

needed for computing the entire cdf. The DFT-CF method, however, is less demanding in

memory. Thus the DFT-CF method is recommended for computing the exact values for the

cdf FN(k), especially when n is large.
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Figure 1: Six different patterns in the pj’s used in the numerical study.
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Figure 2: An illustration of computed cdfs with various methods for Pattern (b) in Figure 1

when n = 200. The x-axis is on the logarithm scale and the y-axis is on the scale of the

quantile function of the standard normal distribution.
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Table 2: Accuracy comparisons for approximation methods.

Pattern (a) (b)
Method RNA NA PA RNA NA PA
n = 10 0.0286 0.0291 0.7287 0.0234 0.0600 0.1113
n = 20 0.0143 0.0207 0.8473 0.0085 0.0876 0.0124
n = 50 0.0082 0.0109 1.5700 0.0150 0.0782 0.0915
n = 100 0.0063 0.0105 2.6048 0.0193 0.0696 0.2345
n = 200 0.0046 0.0054 3.5082 0.0142 0.0801 0.3909
n = 500 0.0029 0.0039 5.4100 0.0100 0.0982 0.3839
n = 1,000 0.0021 0.0021 7.4680 0.0067 0.0945 0.5755
n = 2,000 0.0015 0.0024 10.819 0.0046 0.0947 0.8741
n = 5,000 0.0009 0.0012 17.081 0.0027 0.0891 1.5384
n = 10,000 0.0006 0.0011 23.628 0.0020 0.0916 2.0953
n = 15,000 0.0005 0.0006 29.029 0.0016 0.0926 2.4991
Pattern (c) (d)
Method RNA NA PA RNA NA PA
n = 10 0.0597 0.1743 1.3854 0.0435 0.0604 1.6163
n = 20 0.0493 0.1261 1.8745 0.0352 0.0333 1.8703
n = 50 0.0212 0.0665 3.2784 0.0359 0.0401 3.0619
n = 100 0.0192 0.0900 4.4739 0.0287 0.0291 4.5203
n = 200 0.0116 0.0839 6.9814 0.0167 0.0167 6.1238
n = 500 0.0087 0.0884 12.132 0.0118 0.0123 9.9468
n = 1,000 0.0060 0.0807 18.970 0.0079 0.0085 13.922
n = 2,000 0.0044 0.0899 28.309 0.0056 0.0059 19.769
n = 5,000 0.0028 0.0906 46.528 0.0036 0.0046 31.307
n = 10,000 0.0020 0.0924 66.407 0.0025 0.0025 44.199
n = 15,000 0.0016 0.0912 80.915 0.0021 0.0021 54.089
Pattern (e) (f)
Method RNA NA PA RNA NA PA
n = 10 0.0176 0.0191 0.7665 0.0261 0.0262 0.7921
n = 20 0.0100 0.0104 0.8061 0.0172 0.0181 1.0737
n = 50 0.0071 0.0095 1.3319 0.0103 0.0114 1.6842
n = 100 0.0048 0.0055 1.8916 0.0078 0.0079 2.3522
n = 200 0.0032 0.0039 2.6391 0.0053 0.0055 3.3915
n = 500 0.0021 0.0031 4.3815 0.0031 0.0031 5.1914
n = 1000 0.0016 0.0029 6.4646 0.0023 0.0023 7.5615
n = 2,000 0.0011 0.0015 8.7089 0.0016 0.0017 10.750
n = 5,000 0.0007 0.0007 13.683 0.0010 0.0011 16.876
n = 10,000 0.0005 0.0007 19.598 0.0007 0.0008 24.007
n = 15,000 0.0004 0.0008 23.686 0.0006 0.0007 29.387
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Table 3: Computational efficiency comparisons for the RNA, DFT-CF and RF1 Methods.

The unit of time is the second.

Pattern (a) (b)
Method RNA DFT-CF RF1 RNA DFT-CF RF1
n = 10 0.000 0.000 0.000 0.000 0.000 0.000
n = 20 0.000 0.000 0.000 0.000 0.000 0.000
n = 50 0.000 0.000 0.000 0.000 0.000 0.000
n = 100 0.000 0.000 0.000 0.000 0.000 0.000
n = 200 0.000 0.000 0.001 0.000 0.000 0.002
n = 500 0.000 0.006 0.006 0.000 0.004 0.005
n = 1,000 0.000 0.026 0.050 0.000 0.020 0.023
n = 2,000 0.000 0.106 0.134 0.000 0.081 0.131
n = 5,000 0.000 0.672 0.811 0.002 0.511 0.796
n = 10,000 0.003 2.661 3.354 0.001 2.018 3.305
n = 15,000 0.003 6.033 7.721 0.003 4.557 7.619
Pattern (c) (d)
Method RNA DFT-CF RF1 RNA DFT-CF RF1
n = 10 0.000 0.000 0.000 0.000 0.000 0.000
n = 20 0.000 0.000 0.000 0.000 0.000 0.000
n = 50 0.000 0.000 0.000 0.000 0.000 0.000
n = 100 0.000 0.000 0.000 0.000 0.000 0.000
n = 200 0.000 0.002 0.000 0.000 0.000 0.002
n = 500 0.000 0.006 0.005 0.000 0.006 0.006
n = 1,000 0.000 0.025 0.024 0.000 0.021 0.022
n = 2,000 0.000 0.097 0.131 0.000 0.087 0.132
n = 5,000 0.001 0.602 0.794 0.000 0.555 0.798
n = 10,000 0.002 2.380 3.304 0.002 2.201 3.321
n = 15,000 0.003 5.382 7.624 0.003 4.974 7.671
Pattern (e) (f)
Method RNA DFT-CF RF1 RNA DFT-CF RF1
n = 10 0.000 0.000 0.000 0.000 0.000 0.000
n = 20 0.000 0.000 0.000 0.000 0.000 0.000
n = 50 0.000 0.002 0.000 0.000 0.000 0.000
n = 100 0.000 0.000 0.000 0.000 0.001 0.000
n = 200 0.000 0.001 0.000 0.000 0.002 0.001
n = 500 0.000 0.008 0.005 0.000 0.007 0.005
n = 1000 0.000 0.026 0.022 0.000 0.025 0.024
n = 2,000 0.001 0.108 0.132 0.001 0.100 0.139
n = 5,000 0.002 0.672 0.811 0.002 0.637 0.863
n = 10,000 0.002 2.666 3.365 0.001 2.521 3.628
n = 15,000 0.003 6.017 7.736 0.003 5.685 8.483
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5 Software Implementation

The DFT-CF, RF1, RNA and NA methods have been implemented in R. The computation-

ally intensive components such as the FFT are implemented in C and are linked to R. The

R functions have been wrapped into an R package poibin which can be downloaded from

the Comprehensive R Archive Network (http://cran.r-project.org/). The R function in the

package for computing the cdf FN(k) is ppoibin(), which has an option that allows users to

specify the method to be used for computing.

6 Concluding Remarks

In this paper, we focus on the computing of the distribution function for the Poisson binomial

distribution. We present a simple derivation for an exact formula with a closed-form expres-

sion. We develop an algorithm for efficient implementation of the exact formula and review

the advantages and disadvantages of various approximation methods. Numerical studies were

conducted to study the accuracy of the exact and approximation methods. The DFT-CF,

RF1, RNA and NA methods have been implemented in an R package.

In practice, the DFT-CF method is generally recommended for computing. The RF1

method can also been used when n < 1,000 because there is not much difference in computing

time from the DFT-CF method. When n > 2,000 and the cdf needs to be evaluated many

times, the RNA method is recommended. This is because the RNA method can approximate

the cdf well when n is large and is more computationally efficient, as shown in the numerical

study.
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