
Using a Modified Genetic Algorithm to Find
Feasible Regions of a Desirability Function

WEN WAN1 and JEFFREY B. BIRCH2

1Virginia Commonwealth University, Richmond, VA 23298-0032
2Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0439

Abstract

The multi-response optimization (MRO) problem in response surface methodology is

quite common in applications. Most of the MRO techniques such as the desirability func-

tion method by Derringer and Suich are utilized to find one or several optimal solutions.

However, in fact, practitioners usually prefer to identify all of the near-optimal solutions,

or all feasible regions, because some feasible regions may be more desirable than others

based on practical considerations. In this paper, with benefits from the stochastic prop-

erty of a genetic algorithm (GA), we present an innovative procedure using a modified GA

(MGA), a computational efficient GA with a local directional search incorporated into

the GA process, to approximately generate all feasible regions for the desirability func-

tion without the limitation of the number of factors in the design space. The procedure

is illustrated through a case study. The MGA is also compared to other commonly used

methods for determining the set of feasible regions. Using Monte Carlo simulations with

two benchmark functions and a case study, it is shown that the MGA can more efficiently

determine the set of feasible regions than the GA, grid methods, and the Nelder-Mead

simplex algorithm.

KEY WORDS: Feasible Regions; Multi-response Optimization (MRO); Response Surface
Methodology.



1 Introduction

In industry and many other areas of science, data collected often contain several responses
(or dependent variables) of interest for a single set of explanatory variables (independent
variables, or factors). It is relatively straightforward to find a setting of the explanatory
variables that optimizes a single response. However, it is often difficult to find a setting
that optimizes multiple responses simultaneously. Thus, a common objective is to find
an optimal setting or several feasible settings of the explanatory variables that provide
the best compromise when simultaneously considering the multiple responses. Such an
objective is called the multi-response optimization (MRO) problem.

One of the most popular and formal approaches to MRO is to use some specific function
(an objective function) to combine the responses so that the multiple dimensional problem
can be transformed into a one-dimensional problem. Examples for such specific functions
are the desirability function introduced by Derringer and Suich1, the generalized distance
measure function by Khuri and Conlon2, and the weighted squared error loss function by
Vining3. For each of these and other procedures, the objective functions could be highly
nonlinear. Often, for each of these functions, there may exist several disjoint feasible
operating regions for the MRO problem resulting in multiple local optima.

In fact, as stated in Myers et al4, practitioners are usually interested in finding not
only the optimal solution(s) but the near-optimal solutions as well. That is, the goal in
MRO is to find all feasible regions defined as those locations of the factors that result
in near-optimal responses. Identifying this set of feasible regions is often more useful to
the practitioner than finding one or several optimal solutions, as certain feasible regions
may be more desirable than others based on practical considerations. For example, some
of the feasible regions may be larger than other feasible regions, and thus represent a
broader range of operating conditions under which the process gives optimal or near-
optimal results.

The approach of overlaying the response contour plots, as recommended in Myers et
al5, could be a choice to find the feasible operating regions by visual inspection. But
this graphical approach is limited to two or three dimensional domains of explanatory
variables or factors. Design-Expert (by Stat-Ease Inc.)6 can find feasible regions by
finding groupings of feasible points. Its underlying method is to use the Nelder-Mead
simplex algorithm with many different starting points to collect feasible points. SAS also
has a numerical optimizer which performs a grid search to find feasible regions. Both the
simplex and grid methods can become computationally inefficient when applied to very
complicated high dimensional objective functions because the simplex and grid approaches
are local search algorithms.

We found that a genetic algorithm (GA), a global optimization tool, originally devel-
oped by Holland7, could be a good choice for finding all feasible regions, even for very
high dimensional, complicated problems. However, the GA approach is computationally
intensive (Haupt and Haupt8). Typically a GA, in order to find feasible points, must
evaluate an objective function a large number of times. For example, it may take many
hours for the GA to perform a single evaluation of a complex objective function. In this
case, the GA would become very time-consuming when determining the feasible regions.

In order to find as many feasible solutions as possible that consist of feasible regions
and at the same time minimize the total number of function evaluations, we proposed a
modified genetic algorithm (MGA) that incorporates the simplex algorithm, a local direc-
tional search method, into a traditional genetic algorithm (GA) process. By combining
the GA with the simplex algorithm, the MGA utilizes the advantages of each. Specif-
ically, the MGA combines the advantages of both the GA and simplex in that the GA
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can quickly find a near-optimal solution in a feasible region and the simplex algorithm
can move around the near-optimal solution found by the GA procedure to collect more
feasible points in that feasible region. In this study, we choose a desirability function as
our objective function for the MRO problem. Our MGA approach can easily be extended
to the other MRO objective functions previously mentioned.

We compare our MGA approach to three other methods for identifying feasible regions:
the basic GA, the Nelder-Mead (NM) simplex algorithm, and the grid search method.
Through a case study and our simulation studies, we show that the MGA is the most
computational efficient method among the four methods in finding all the feasible regions
for the desirability function approach.

The remainder of this paper is organized as follows. In section 2, we briefly introduce
the desirability function method and the definition of its feasible regions. We give a brief
introduction to the NM simplex, the grid search, the GA and MGA methods, respectively,
in section 3. We then justify the MGA method as useful at approximating all feasible
regions and present the procedure for using the MGA to approximate all feasible regions
of the desirability function. In section 4, we illustrate the procedure through a case study
showing that the procedure successfully identifies the disjoint feasible regions. Section
5 compares the four methods using the case study and two benchmark functions and
concludes that the MGA is the most efficient method collecting as many feasible points
as possible in a certain limited number of function evaluations.

2 Desirability Function and its Feasible Region

The desirability function method, proposed by Derringer and Suich1, transforms each
response into a dimensionless individual desirability value, scaled within [0, 1], through
a desirability function and then combines these individual desirabilities into one final
desirability value using a geometric mean. The final desirability value (considered here as
an objective function utilized for optimization) is given by

D = (d1 × d2 × · · · × dm)1/m × 100%, (1)

where m is the number of responses and di is the ith individual desirability values based
on some appropriately chosen desirability function, a function of explanatory variables.
The individual desirability functions are presented in the appendix. The goal in MRO
is to find a setting of the explanatory variables that maximizes (an optimal solution) or
nearly maximizes (a near-optimal solution) D. The range of D obviously is [0, 1]. Our
goal is to identify all feasible regions which consists of all near-optimal solutions.

All feasible regions may be defined and constructed by all solutions which achieve
D ≥ Dcutoff , where Dcutoff is some appropriate value. The choice of Dcutoff may de-
pend on the global maximum value of D, denoted by “Dmax,” and on the priority of
the experiment. For example, suppose that the maximum value of D is Dmax = 0.85.
The feasible regions may be defined and constructed by all those feasible solutions which
achieve D ≥ Dcutoff = 0.80.
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Four algorithms, presented in section 3, will be used to determine those sets of values
of the explanatory variables satisfying the near-optimality condition D ≥ Dcutoff . This
set of points for each algorithm constitute the feasible regions for that algorithm. Each
algorithm will require many iterations of its computational scheme to identify the feasible
regions.

3 Brief Introduction to The Four Algorithms

3.1 Nelder-Mead Simplex Algorithm

The NM simplex method for finding a local maximum of a function of several variables
has been devised by Nelder and Mead9. For two variables, a simplex is a triangle, and the
method is a pattern search that compares function values at the three vertices of a triangle.
The worst vertex, where f(x, y) is smallest, is rejected and replaced with a new vertex. A
new triangle is formed and the search is continued. The process generates a sequence of
triangles (which might have different shapes), for which the function values at the vertices
get smaller and smaller. The size of the triangles is iteratively reduced and the coordinates
of the minimum point are found. The NM algorithm can easily be extended to higher
dimensions. In many numerical tests, the NM algorithm succeeds in obtaining a good
reduction in the function value using a relatively small number of function evaluations
but it is easy for NM to converge to a local optimal and not suitable for a highly nonlinear
objective function. The C++ code for NM is obtained from Numerical Recipes in C++
(William et al10).

3.2 Grid Search Algorithm

In the 1-dimensional parameter case, consider the optimization of a general function f .
If we have n test points x1, ..., xn such that L ≤ x1 ≤ ... ≤ xn ≤ U , then the set of values,
f(x1), ..., f(xn), gives some indication of the behavior of f . It is very straightforward
to extend the idea to a higher-dimensional case. Usually the equal-distance grid on the
region is considered. Also, usually the full grid search (when n is large) is impractical in
higher dimensional problems. Even for a low dimensional problem, most of the function
evaluations will be wasted.

3.3 Genetic Algorithm

In a GA, a search point, a setting in the search space, is coded into a string which is
analogous to a chromosome in biological systems. The string (or chromosome) is com-
posed of characters which are analogous to genes. In a response surface application, the
chromosome corresponds to a particular setting of k explanatory variables in the design
space, denoted by x = [x1, x2, ..., xk]

′, where the ith gene in the chromosome corresponds
to a xi, the value of the ith regressor. In GA terminology, a set of multiple concurrent
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search points or a set of chromosomes (or individuals) is called a population. These chro-
mosomes are evaluated for their performance with respect to an objective function. Each
iterative step where a new population is obtained is called a generation.

The three main GA operations, utilized to generate a new population from the current
population in each iterative step, consist of selection, crossover and mutation. Each GA
operation involves randomness. The selection operation involves randomness in that two
chromosomes are randomly selected from the current population and become a pair of
parents to produce two new offspring. The crossover operation allows for the exchange
of some information from a pair of parents and its transmission to next generation. The
locations of the crossover points are randomly chosen. The mutation operation is used to
alter a very small number of the “genetic material” in a random fashion, enhancing the
diversity of the population. The locations where mutation occurs for each chromosome in
the current population are also randomly chosen.

A GA process is as follows. The initial population, a collection of n chromosomes, or
x1,...,xn, is randomly generated. Each chromosome in the initial population is evaluated
in terms of an objective function. Then the initial population, which becomes the current
parent population, generates an offspring population using the GA operations of selection,
crossover, and mutation. The objective function is evaluated for each chromosome or each
x in the offspring population. A decision is then made, based on the value of the objective
function for each x, as to which chromosomes from among the offspring population and
the current parent population are retained into the next generation as a new population.
This GA process will be iteratively continued until some convergence criterion of has been
satisfied. More details on the GA can be seen, for example, in Holland7 and Haupt and
Haupt8.

A basic GA procedure has the following steps.

1. Define an objective/fitness function, and its variables. Set GA operations (such as
population size, parent/offspring ratio, selection method, number of crossovers and
mutation rate).

2. Randomly generate the initial population. That is, obtain x1,...,xn.

3. Evaluate each chromosome in the initial population by the objective function. That
is, compute D(x1), ..., D(xn), where D(xi) is the desirability function evaluated at
the ith chromosome xi.

4. Generate an offspring population, by GA operations (such as selection/mating,
crossover, and mutation). That is, generate a new set of n settings of the regres-
sors, using the operations of selection, crossover, and mutation of x1,...,xn to obtain
x∗

1,...,x
∗
n.

5. Evaluate each individual in the offspring population by the objective function.
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6. Decide which individuals to include in the next population. This step is referred
to as “replacement” in that individuals from the current parent population are
“replaced” by a new population, whose individuals come from the offspring and/or
parent population.

7. If a stopping criterion is satisfied, then the procedure is halted. Otherwise, go to
Step 4.

3.4 A Modified Genetic Algorithm

The idea of the MGA is that during each GA iteration cycle, once the GA finds a feasible
point whose D value is greater than Dcutoff , a NM simplex local search is implemented
with that feasible point considered as a starting point. The local search is halted when the
objective function fails to increase. During the MGA process, all the feasible points are
recorded as long as their D values > Dcutoff . Our MGA combines the advantages of both
the GA and NM methods. In the MGA process, the GA component moves throughout
the regressor variable space to locate feasible points and the simplex component examines
the local region around each feasible point to collect as many feasible points as possible
in those feasible regions.

The MGA procedure is the same as that of GA, except that in the ith generation we
add step D between steps 5 and 6 in the original GA procedure as follows:

D. Is the best chromosome in the offspring population also the best over the current
parent population and does the best offspring have a D value > Dcutoff? That is,
is max(D(x∗

i )) > Dcutoff?

D-1. If no, directly go to Step 6.

D-2. If yes, then define and implement a NM local direction search with that chro-
mosome as a starting point. The local search will be ended when the objective
function fails to increase. Find the chromosome with the largest desirability
value and replace the best chromosome with the largest desirability value in
the offspring population with this point. Then go to Step 6.

3.5 Stopping Criterion

The grid method has no specific stopping criterion in that it will be halted when all the
points on the uniform equal-distance grid are evaluated. The NM simplex method will
be halted when either or both a certain number of iterations occurs or the fractional
convergence tolerance, a very small value, is achieved. Due to the purpose of finding
feasible regions instead of a single global optima, the GA method will be stopped when a
certain number of iterations is achieved. The settings of the NM simplex procedure used
in MGA including the stopping criterion are the same as the ones used in the simplex
method alone, and the settings of a GA are the same as the ones of MGA.
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3.6 A Simulation Study to Compare the Four Algorithms

Logic dictates that as the number of function evaluations increases so does the number of
feasible points. It is conceivable, for example, that each procedure would be able to find all
feasible points provided an unlimited number of function evaluations. A computationally
efficient method will find many of the feasible points with less computational effort than
another method that finds as many feasible points. Conversely, a method that finds
more feasible points with the same number of function evaluations as another method is
more computationally efficient and would be the preferred method. Due to the stopping
criterion used for NM, as mentioned in section 3.5, we cannot control for equality of the
number of function evaluations for the NM simplex method and therefore for the MGA
method as well. Consequently, we consider the efficiency index, given by

efficiency index =
total number of feasible points collected

total number of function evalautions
,

as a comparison measure of computational efficiency. The higher the efficiency index, the
higher computational efficiency of a method for finding feasible regions.

To obtain a sufficient number of feasible points to establish dense feasible regions,
each algorithm has to be repeated many times using different starting points. To compare
the four algorithms via Monte Carlo simulations, we repeated the procedure for finding
feasible regions 500 times for each algorithm. Then the mean of efficiency index (denoted
by “EI”) can be calculated by

Mean(EI) =

n∑
i=1

EIi/500,

where i = 1, ..., 500, and its Monte Carlo error by

MC error =

√√√√√
n∑

i=1

(EIi − Mean(EI))2

500 − 1
/
√

500.

3.7 Procedure of using MGA to Find Feasible Regions

The NM, GA, and MGA procedures are designed to search out the locations of optimal
points. However, since the desirability functions are often extremely nonlinear with possi-
bly many local optima, it is necessary to repeat each procedure many times to adequately
describe the feasible regions. Below we describe, using the MGA procedure, the steps
required to obtain these feasible regions. These same steps are used for the NM and GA
procedures as well.

The procedure of using MGA to determine the approximate feasible regions has four
stages, listed as follows.
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1. MGA is repeated several times (say, five times) with different random seeds and an
optimum and its corresponding location are recorded for each repetition. The best
optimum among all these recorded optima is considered as a global optimum.

2. Based on the results from Stage 1 and based on the priority from the experimenters,
the feasible solutions of the desirability function D are determined. That is, an
appropriate cutoff value, Dcutoff , is chosen so that all locations found by MGA
which achieve corresponding D values greater than this cutoff are regarded as feasible
points.

3. When the MGA is repeated many times with different random seeds and with dif-
ferent settings of the GA operations such as different crossover points and mutation
rates, feasible points are collected. As the number of repetitions of MGA is in-
creased, the approximate feasible regions approach the true feasible regions.

4. Plot these feasible points in pairwise 2-dimensional axes. Then, based on these
plots, calculate the feasible regions for each factor.

4 Case Study: A Chemical Process

To illustrate finding the feasible regions for a specific problem, we consider the following
example from Myers et al5, where a central composite design was conducted for a chemical
process. Two explanatory variables (or factors) are time (x1) and temperature (x2). Three
responses of interest are yield (y1), viscosity (y2) and number-average molecule weight (y3).
The collected data are given in Myers et al5. As in Myers et al5, we transform the natural
independent variables into the coded variables within the range of [0,1].

In this case study, their MRO goal is to maximize y1 (the minimum L = 70 and
optimum T = 80), and achieve a target value for y2 (the minimum L = 62, the target T
= 65, and the maximum U = 68), and, at the same time, control y3 within the acceptable
range of [3200, 3400]. The desirability function method is utilized to find simultaneous
optimum solutions of the responses y1, y2, and y3. In addition, the solution vector, xs,
should be within the experimental region R, which is defined as (x1−0.5)2 +(x2−0.5)2 ≤
0.52 in this case study.

4.1 Results by MGA Through the Procedure

In Stage 1, under the same conditions and fitted models given in Myers et al5, the two
solutions we found by MGA are listed as follows.

1) x1 = 0.5767 x2 = 0.1624 ŷ1 = 78.6344 ŷ2 = 65.0000 ŷ3 = 3261.3111 D = 0.9292
2) x1 = 0.2676 x2 = 0.7964 ŷ1 = 78.2821 ŷ2 = 65.0000 ŷ3 = 3400.0000 D = 0.9101

These two solutions are different from the two solutions obtained by Design-Expert
as shown in Myers et al5 (whose two values of D are 0.822 and 0.792) in terms of fitted
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optimal values for all of the three responses. The solutions obtained by MGA result in
larger values of D, indicating that MGA performs better, in this example, at finding the
optimal value of D than the Nelder-Mead simplex algorithm used by Design-Expert.

Figure 1 represents the surface (the left graph) of the desirability function D within
the experimental region R and its corresponding contour plot (the right graph). The
figure shows that there are two distinct surfaces which represent two disjoint operating
regions. Obviously, the surface of D matches well to the contour plot. In addition, the
two optimal solutions we found also match well to the figure.

[Figure 1 here]

Based on the results from Stage 1, the feasible solutions can be defined by choosing
appropriate cutoff values in terms of the desirability function D. In this study, several
cutoff values, 0.2, 0.5, 0.8 and 0.9, are used to check if MGA can determine the two
feasible regions by collecting feasible points. That is, if the cutoff value of D (0.2, 0.5, 0.8
or 0.9) is achieved, then the corresponding location, which is regarded as a feasible point,
is recorded during the MGA process. MGA with 100 iterations is repeated 20 times with
20 different starting random seeds and with 12 different settings of the GA operations to
obtain a sufficiently large number of the feasible points. We note that during the MGA
process, some of the same feasible points/locations may be found multiple times. The
CPU time is only about 8 seconds using a moderately equipped PC.

Figure 2 represents the plots of the feasible points collected by MGA with different
cutoff values (0.2, 0.5, 0.8, and 0.9) respectively. It shows that the observed feasible points
define two disjoint regions, which correspond to the peaks of the two surfaces shown in
Figure 1. With the cutoff values increasing from the left to the right in Figure 2, the
regions become smaller and narrower. Compared to the contour plot of the desirability
function in Figure 1, it is easy to see that the shapes and sizes of the two disjoint regions
are very close to the ones of the contour plot at the four different levels of cutoff values of
D. That is, the two disjoint regions are defined very well by the feasible points collected
using MGA.

[Figure 2 here]

Based on the knowledge from the plots in Figure 2, we can calculate the feasible
regions for each factor. For example, suppose that only values of D greater than or equal
to 0.9 are acceptable. To calculate the approximate feasible regions, one feasible region
would be x1 in [0.247, 0.268] with x2 in [0.795, 0.798] and the second feasible region would
be x1 in [0.460, 0.798] with x2 in [0.153, 0.176]. Obviously, the second feasible region is
larger than the first one in terms of the ranges of both factors x1 and x2. Therefore, the
second feasible region would be considered to be more desirable than the first one, due to
a broader set of the operating conditions. In addition, in the feasible region, the factor x1

(time) is more robust than the factor x2 (temperature), because x1 has a wider range than
x2 to achieve the same feasible operating region. Note that the feasible regions calculated
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only give us the information on the upper and lower bounds for each factor. For more
information about the feasible regions such as the shape, we have to rely on the plots of
the feasible regions, approximately displayed by the collected feasible points.

In this case study, the surface of the desirability function D and its contour plot are
utilized to check the performance of our method to identify all feasible regions. If the
case study had more than two or three factors/dimensions, then it would be difficult to
graphicly show the surface of D and its contour plot. Thus, in such situations, we could
not tell where the optimal solution is and where the feasible regions are. However, we
still could use MGA to find its optimal solution and all its feasible regions and plot them
in pairwise 2-dimensional axes.

4.2 Comparison Results

Table 1 shows the results of comparisons of the grid, NM simplex, GA, and MGA methods
via the Monte Carlo simulations, with the cutoff value 0.9, as mentioned in Section 3.6,
in terms of mean total number of function evaluations, mean total number of feasible
points collected, and mean efficiency index over 500 simulations. The Monte Carlo errors
were provided in parentheses. We did not do simulations for the grid method because its
function evaluations were performed on the uniform equal-distance grid. In Table 1, the
averaged total number of function evaluations were different as was the mean number of
feasible points found. The mean efficiency indexes were 0.02, 0.28, 0.40, and 0.42, for the
grid, NM simplex, GA, and MGA procedures, respectively, and implies, for this example,
that MGA is the most efficient method, followed by the GA and NM simplex methods.
The grid procedure is extremely inefficient in terms of our EI criteria. In other words, our
MGA method collected relatively more feasible points per number of function evaluations
than the other methods.

[Table 1 here]

5 Two Benchmark Functions

In addition to the case study, the two benchmark functions, the Schwefel’s and Rastrigin’s
functions, were used for the comparisons of the NM simplex, GA, and MGA methods.
The grid method is not included due to its poor performance in the case study.

A generalized Schwefel’s problem 2.26 from Schwefel11 and Bartz-Beielstein12, is given
by

k∑
i=1

−xi sin(
√
|xi|), where − 500 ≤ xi ≤ 500,

where k is the number of dimensions of the function. The minimum of the objective
function is given by

min(f(x)) = f(420.9687, ..., 420.9687).
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The minimum is dependent on k, the number of dimensions. For example, if k =2, then
the minimum value is -837.97. Figure 3 shows its 1- and 2-dimensional surfaces.

[Figure 3 here]

A generalized Rastrigin’s function (Bartz-Beielstein12) is given by

f(x) =
k∑

i=1

(x2
i − 10 cos(2πxi) + 10), where − 5.12 ≤ xi ≤ 5.12, (2)

where k is the number of dimensions of the function. Figure 4 shows its 1- and 2-
dimensional surfaces. The surfaces are very bumpy in a narrow range [-5.12, 5.12]. The
goal is to find a minimal value and its corresponding location. The minimum of this
function is known as min(f(x)) = f(0, ..., 0) = 0.

[Figure 4 here]

In this study, we consider the two-dimensional case (that is, k = 2) for the Schwefel’s
function and the three-dimensional case (k = 3) for the Rastrigin’s function. Like the
desirability function in the case study, each benchmark function has its feasible regions.
Suppose a feasible point is defined and collected for feasible regions when the function
satisfies ≤ −700 for the Schwefel’s function or ≤ 3 for the Rastrigin’s function. Figure
5 shows the feasible regions for the 2-dimensional Schwefel’s function ≤ −700 in the left
panel and for the 3-dimensional Rastrigin’s function ≤ 3 in the x1 vs x2 design space in
the right panel. The figures in the x1 vs x3 and x2 vs x3 design spaces for the Rastrigin’s
function are quite similar to the one in the right panel and not shown here because of the
symmetric property of the Rastrigin’s function for each dimension. We can see that there
are three feasible regions in the Schwefel’s function and nine in the Rastrigin’s function.

[Figure 5 here]

Similar to the case study, we compare the NM simplex, GA, and MGA methods
using the two functions. Table 2 shows the comparison results through the Monte Carlo
simulations, as mentioned in Section 3.6, in terms of mean total number of function
evaluations, mean total number of feasible points collected, and mean efficiency index
over 500 simulations. The Monte Carlo errors were provided in parentheses. Obviously,
MGA has the highest values of efficiency index in both benchmark functions, indicating
that MGA is the most efficient method to collect feasible points.

[Table 2 here]
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6 Conclusion

The multi-response optimization (MRO) problem in response surface methodology is quite
common in applications. Most of the MRO techniques such as the desirability function
method are utilized to find one or several optimal solutions. However, practitioners usually
prefer to identify all of the near-optimal solutions, or all feasible regions, because some
feasible regions may be more desirable than others based on practical considerations. The
desirability function like other MRO methods is highly non-linear. In this study, based
on a GA, we developed a modified GA, MGA, that combines the global optimization
strategy of the GA with the local optimization characteristics of the Nelder-Mean simplex
algorithm. Our MGA procedure quickly finds feasible regions, similar to the GA, and
incorporates the Nelder Mead simplex algorithm to “walk” around in those feasible regions
to collect as many feasible points as possible. We also present a procedure using the
MGA to approximately generate all feasible regions for the desirability function without
the limitation of the number of factors in the design space.

The MGA is also compared with the GA, Nelder-Mead simplex algorithm, and grid
methods in terms of the efficiency index, using a case study and two benchmark functions
through Monte Carlo simulations. A comparison of the results in Tables 1 and 2 show
that the MGA procedure is the most computationally efficient among the four methods
considered, in terms of the efficiency index, at identifying those feasible points belonging
to each feasible region.

All the examples in the study are all low-dimensional problems. As the number of
dimensional increase, the Nelder-Mead simplex and grid search methods both are less
computationally efficient than the GA, the global optimization method, and much less
than our MGA method. The procedure of finding feasible regions for a desirability func-
tion can easily be extended to finding feasible regions for other MRO techniques which
have nonlinear objective functions such as the generalized distance measure function and
weighted squared error loss function as mentioned in the introduction.

C++ code is available upon request from the authors.
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APPENDIX: Individual Desirability

The following details concern the individual desirability functions and their parame-
ters.

As mentioned in section 2, ŷi(x) is needed to transform into a dimensionless individual
desirability, di, in the desirability function. There are two cases for transformation to
consider: one-sided and two-sided transformations. One-sided transformations are used
when the goal is to either maximize the response or minimize the response. Two-sided
transformations are used when the goal is for the response to achieve some specified target
value. When the goal is to maximize the ith response, the individual desirability is given
by the one-sided transformation

di =

⎧⎪⎨
⎪⎩

0 ŷi(x) < L[
ŷi(x)−L

T−L

]r

L ≤ ŷi(x) ≤ T

1 ŷi(x) > T

, (3)

where T represents an acceptable maximum value, L represents the acceptable minimum
value and r is known as a “weight”, specified by the user. Similarly, when the goal is
to minimize the ith response, the corresponding individual desirability is written as the
one-sided transformation

di =

⎧⎪⎨
⎪⎩

1 ŷi(x) < T[
U−ŷi(x)

U−T

]r

T ≤ ŷi(x) ≤ U

0 ŷi(x) > U

, (4)
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where T is an acceptable minimum value and U is the acceptable maximum value.
When the goal is to obtain a target value, the individual desirability is given by the

two-sided transformation

di =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ŷi(x) < L[
ŷi(x)−L

T−L

]r1

L ≤ ŷi(x) ≤ T[
U−ŷi(x)

U−T

]r2

T ≤ ŷi(x) ≤ U

0 ŷi(x) > U

, (5)

where T is the target value, and L and U are the acceptable minimum and maximum
values respectively, and r1 and r2 are weights, specified by the users.

This desirability function D offers the user great flexibility in the setting of the desir-
abilities due to allowing users to chose appropriate values of L, U, and T, and of r, r1,
and r2, for their different specific situations. For more details on the desirability function,
see, for example, Derringer and Suich1 and Myers et al5.

13



Table 1: Comparisons of the grid, Nelder-Mead simplex, GA, and MGA methods through
500 Monte Carlo simulations, in terms of mean total number of function evaluations,
mean total number of feasible points collected, and mean efficiency index. The MC errors
are in parentheses.

grid* NM simplex GA MGA
Mean num of func eval 40000 37122.55 (31.53) 28800.00(0.00) 32627.36(26.20)
Mean num of feas points 956 10261.65 (10.88) 11371.17(32.15) 13652.26 (38.27)
Mean efficiency index 0.02 0.28 (2.68E-04) 0.40 (1.12E-03) 0.42 (1.12E-03)

*No simulations for the grid method

Table 2: Comparisons of the grid, Nelder-Mead simplex, GA, and MGA methods through
500 Monte Carlo simulations, in terms of averaged total number of function evaluations,
averaged total number of feasible points collected, and averaged efficiency index. The MC
errors are in parentheses.

NM simplex GA MGA
Schwefel function in 2-dimension

Mean num of func eval 211661.02 (18.31) 163800.00 (0.00) 303700.87 (142.73)
Mean num of feas points 7104.95 (38.82) 35759.50 (16.18) 173358.91 (144.33)
Mean efficiency index 0.03 (1.8E-04) 0.22 (8.9E-05) 0.57 (2.2E-04)

Rastrigin function in 3-dimension
Mean num of func eval 26195.80 (93.24) 129893.58(27.84) 409505.54 (297.32)
Mean num of feas points 1134480.41 (25.15) 1082160.00(0.00) 1048832.70 (298.38)
Mean efficiency index 0.02 (8.9E-05) 0.12(4.5E-05) 0.39 (1.8E-04)
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Figure 1: The 3-D surface and the contour plot of the desirability function (denoted by
”Des”) within the experimental region R in the case study of a chemical process: left:
3-D surface and right: contour
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Figure 2: Plots of the feasible points collected by MGA with four different cutoff values
in the case study of a chemical process: the first graph is by 0.2; the second is by 0.5; the
third is by 0.8; and the last is by 0.9.
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Figure 3: Surface of Schwefel’s function. Left: 1-dimension; right: 2-dimension.
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Figure 4: Surface of Rastrigin’s function. Left: 1-dimension; right: 2-dimension.
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Figure 5: Plots of the feasible regions. Left: those satisfy ≤ −700 in the Schwefel’s
function; right: those satisfy ≤ 3 in the Rastrigin’s function.
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