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Profile monitoring is an approach in quality control best used where the process data follow a profile (or curve).

The majority of previous studies in profile monitoring focused on the parametric modeling of either linear or non-

linear profiles, with both fixed and random-effects, under the assumption of correct model specification. Our work

considers those cases where the parametric model for the family of profiles is unknown or, at least uncertain. Con-

sequently, we consider monitoring profiles via two methods, a nonparametric (N P ) method and a semiparametric

procedure that combines both parametric and N P profile fits. We refer to our semiparametric procedure as mixed

model robust profile monitoring (M MRP M). Also, we incorporate a mixed model approach to both the paramet-

ric and N P model fits to account for the autocorrelation within profiles and to deal with the collection of profiles

as a random sample from a common population. For each case, we propose two Hotelling’s T 2 statistics for use in

Phase I analysis to determine unusual profiles, one based on the estimated random effects and one based on the

fitted values and obtain the corresponding control limits.

Our simulation results show that our methods are robust to the common problem of model misspecification of

the user’s proposed parametric model. We also found that both the N P and the semiparametric methods result in

charts with good abilities to detect changes in Phase I data, and in charts with easily calculated control limits. The

proposed methods provide greater flexibility and efficiency when compared to parametric methods commonly

used in profile monitoring for Phase I that rely on correct model specification, an unrealistic situation in many

practical problems in industrial applications. An example using our techniques is also presented.

KEY WORDS: T 2 Control Chart, Industrial Application, Model Robust Regression, Model Misspecification,

Model Robust Profile Monitoring, P-Spline, Quality Control.
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1 INTRODUCTION

Profile monitoring is an approach in statistic process control (SPC ) that is important when the product or process

quality is best represented by a profile. In most SPC applications, the quality of a process or product is character-

ized by univariate or multivariate quality characteristics. However, in some applications the quality of a process

or product is characterized by a relationship between a response variable and one or more explanatory variables.

Kang and Albin (2000) refer to this relationship as a profile. In general, the act of using various techniques to sta-

tistically monitor the process or product profiles is known as profile monitoring (Woodall, 2007; Woodall et al.,

2004).

Woodall et al. (2004) presented a literature review on this subject and introduced a general framework for pro-

cess monitoring using profile data. Woodall (2007) introduced a general strategy for monitoring more compli-

cated parametric models than the simple linear regression model, including, for example, applications to nonlin-

ear models, and discussed several nonparametric (N P ) methods, such as wavelets and splines, to fit each profile.

Many applications have appeared in the literature. Our focus is on Phase I applications where the aim is to obtain

the estimated in-control-limits by analyzing a historical data set (HDS) to gain understanding of the process vari-

ation, to determine the process stability, and to remove any outlying samples when setting control chart limits for

Phase I I analysis. For more details on Phase I and Phase I I analysis see Montgomery (2005).

Much of the previous work on profile monitoring has been based on the assumption that the parametric mod-

els for profiles are correctly specified. This is often an unrealistic assumption in practice for many types of ap-

plications. For example, in plotting the profile data, the researcher may see features such as peaks, dips or local

wiggles that are not captured by a parametric profile of any type, linear or nonlinear. While these features may be

unique to a single or a few profiles and thus could be considered as outlying profiles, they can often be features

that consistently appear in all the profiles and thus should be captured in the model.

The parametric model may be misspecified in different ways, including wrong effect classification (either fixed

or random), and/or wrong model matrices. In these situations, the researcher may still want a "function" to de-

scribe the profile, although it may not be a parametric one. An incorrectly specified parametric profile model

may be improved by using a N P profile model. Such a N P model may be used in estimating profiles with greatly

reduced bias in estimating the true profile than achieved by using an incorrectly specified parametric model.

Not all of the previous work in profile monitoring has been completed using parametric models. Several re-

searchers have relied on N P regression or data-driven methods, such as wavelet thresholding, spline regression

and local polynomial regression for monitoring profiles (Zou et al. (2008), Zou et al. (2009) and Qiu and Zou (2009)).

Recently, Wei et al. (2010) proposed a nonparametric L −1 regression location-scale model to screen the shape of

the profiles in Phase I I analysis. Their method is robust against heavy-tailed distributions that do not have finite

second moments. Qiu et al. (2010) introduced a N P procedure by incorporating local linear kernel smoothing

in the exponentially weighted moving average control scheme to perform Phase I I profile monitoring. Also, see

the comment on this paper by Woodall et al. (2010). The goal of this research is to introduce the mixed penal-

ized spline regression approach as an alternative N P method for profile monitoring. Additionally, we propose a
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semiparametric approach, referred to as mixed model robust profile monitoring, or M MRP M , that combines a

parametric fit with a N P fit, in the profile monitoring context. Our N P and semiparametric approaches for fitting

profile data are more flexible than a purely parametric approach. Even when a specific functional form appears

reasonable, the N P or semiparametric model provides a more robust model alternative that can be useful in the

process of model checking and validation. Additionally, our methods can be used to monitor a broad category of

profiles, either linear or nonlinear.

Once the profiles are properly modeled, we conclude the Phase I analysis by utilizing several versions of the

Hotelling’s T 2 statistic to determine outlying profiles, following the example of Jensen et al. (2008) and Jensen and

Birch (2009). In our simulations to come, we will introduce step changes to create the outlying profiles, thus the

T 2 statistic based on the successive differences estimator of the variance-covariance matrix (Sullivan and Woodall

(1996)) is the most appropriate. We could use other versions of the T 2 statistic to detect outlying profiles, such as

those based on the MV E or MC D as was done by Amirhossein et al. (2010) but we will not consider those types of

outlying profiles here. Our focus is on an alternative approach to modeling the profiles, thus we will focus less on

the determination of which type of T 2 statistic is best. This determination was discussed in the studies of Vargas

(2003) and Jensen et al. (2007) and the references therein.

As a practical application of this research, we consider the following example from the automotive industry.

One of the most important quality characteristics of the automobile engine is the relationship between the torque

produced by an engine and the engine speed in revolutions per minute (RP M). A plot of torque versus RP M forms

a profile for each engine. Because the observations within an engine may exhibit serial correlation, we propose the

use of mixed models to monitor the engine data in oder to account for the correlation structure. It is reasonable

to apply our proposed methods on this data set since the parametric mixed model, as illustrated in Section 6, is

not able to capture the main characteristics of each engine profile. We apply our proposed methods for profile

monitoring on this dataset in Section 6.

The remainder of this paper is organized as follows. Section 2 gives a review for the parametric linear mixed

model approach for profile monitoring. We introduce penalized spline regression as a new N P method to esti-

mate the mixed effects profiles in Section 3. In Section 4, we introduce a mixed model robust profile monitoring

(M MRP M) method. In addition, we present diagnostic tools to determine outlying profile(s) for our new meth-

ods. Section 5 contains a simulation study to compare the parametric, N P , and M MRP M methods. In Section 6,

we apply the proposed methods and the parametric quadratic mixed model to the automotive industry data set,

and Section 7 summarizes the conclusions.

2 PARAMETRIC LINEAR MIXED MODELS APPROACH

A linear mixed (LM) model is defined as a model that contains at least one fixed effect and at least two random

effects, including the error term, and is linear in these effects. Linear mixed models are widely used in many
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disciplines. Henderson (1950), for example, one of the first authors proposing use of LM models, applied them

to estimation problems in the animal sciences. Laird and Ware (1982) generalized Henderson’s work, and their

formulation is commonly known as the Laird-Ware model.

We assume the true mean response function for the i th profile, fi (xi j ), can be given by

fi (xi j ) = f (xi j )+ξi (xi j )+εi j i = 1,2, . . . ,m j = 1,2, . . . ,ni (1)

where f (xi j ) represents the mean response function for all profiles, the so-called the population average (PA)

profile, and ξi (xi j ) represents the random effects for the i th profile, and ξi (xi j ) ∼ N (0,σ2
ξ

), where xi j represents the

j th observation of the single regressor X in the i th profile and m is the number of profiles. The εi is a (ni ×1) vector

of errors, where εT
i = (εi 1,εi 2, . . . ,εi ni )T , assumed to follow a multivariate normal distribution with zero mean vector

and variance-covariance matrix Ri , εi ∼ M N (0,Ri ). Model 1 can easily be extended to handle multiple regressors

but for simplicity we consider here only the one regressor case, a situation fairly common in profile monitoring.

The user’s LM model can be the Laird-Ware model, a parametric model, for the i th profile of the form

yi = Xiβ+Zi bi +εi i = 1,2, . . . ,m (2)

where yi represents a response vector for the i th profile,β represents a vector of fixed effects common to all profiles

with a known Xi , the model matrix. In addition, Zi is a (ni ×q) matrix of the predictor variables with random effects

bi ∼ M N (0,D), a (q ×1) vector of random effects for the i th profile, and D is a (q ×q) variance-covariance matrix.

Often Zi is typically a matrix whose columns are a subset of the columns of Xi . εi is distributed as stated in the

previous paragraph. Let N =∑m
i=1 ni , i = 1,2, . . . ,m denote the total sample size.

The estimated parameter vector for the i th profile (β̂P
i ) using the parametric approach is

β̂P
i = β̂+ b̂∗

i i = 1,2, . . . ,m (3)

where β̂ represents the PA coefficients for all the profiles and b̂∗
i is a (p ×1) vector containing the elements of

b̂i = D̂ Z T
i V̂ −1

i (yi −Xi β̂) i = 1,2, . . . ,m (4)

for the columns of Zi that are equal to those of Xi and zeros otherwise. Consequently b̂∗
i = b̂i when Zi = Xi . The

“P” indicates that the parametric approach is used.

The T 2 statistics, based on the estimated parameter vector, are

T 2
Par,i = (β̂P

i − ¯̂β
P

)T Σ̂−1(β̂P
i − ¯̂β

P
) i = 1,2, . . . ,m (5)

where ¯̂β
P

i = 1
m

∑m
i=1 β̂

P
i , and Σ̂ represents the estimated variance-covariance matrix for the estimated parameter

vector for the i th profile (β̂P
i ) using the successive differences, Σ̂= 1

2(m−1)

∑m−1
i=1 (β̂P

i+1 − β̂P
i )(β̂P

i+1 − β̂P
i )T .

Jensen et al. (2008) modified the above formula (5) for the LM model as a function of the b̂i for the i th cluster

specific (C S) curve as follows:

T 2
Par 2,i = (b̂i )T Σ̂−1(b̂i ) i = 1,2, . . . ,m (6)
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In addition, we introduce another formula for the Hotelling’s T 2, where the T 2 statistics can be evaluated by

comparing the parametric fitted values for the i th C S sample profile, and for the population average (PA), where

“P” indicates that the parametric approach is utilized, as follows

T 2
Par 1,i = (ŷP

C S,i − ŷP
PA)T V̂ −1(ŷP

C S,i − ŷP
PA) i = 1,2, . . . ,m (7)

where ŷP
C S,i is the C S curve fit for the i th profile at l = 1,2, . . . ,n′, where n′ represents the number of x−values

used for comparison of the m profiles, based on the parametric LM model. As a general rule, n′ should be chosen

large enough to obtain adequate representation of all m profiles but smaller than the total sample size, N . The PA

curve fit is ŷP
PA for the historical data set (HDS) obtained parametrically and V̂ is an n′×n′ appropriate estimated

variance-covariance matrix for the ŷP
C S,i , such as V̂D . It can be shown (Abdel-Salam (2009)) that the T 2

Par,i statistics

based on the estimated random effects (as in Equation (6)) and based on the fitted values (as in Equation (7)) give

the same results for the parametric method but different results for the N P and M MRP M methods.

The previous work on parametric profile monitoring has been based on the assumption that the fitted para-

metric model adequately describes the profile data, which is an unrealistic situation in many practical problems

in real life applications.

3 PROFILE MONITORING FOR MIXED MODELS USING P-SPLINE

REGRESSION

In this section, we propose the penalized spline (p-spline) regression method for the mixed model case to estimate

the m profiles in the profile monitoring context. Also, we introduce diagnostic tools to determine the presence of

outlying profile(s).

3.1 P-spline Estimation for Mixed Effects Profiles

The most applicable and flexible models are those that allow for the C S curves to be estimated by N P methods.

See Ruppert et al. (2003), and Wegener and Kauermann (2008) for more details. Recall the true mean response

model for the i th profile expressed by (1) is

yi j = f (xi j )+ξi (xi j )+εi j i = 1,2, . . . ,m j = 1,2, . . . ,ni (8)

where yi j is a response variable for the j th observation on the i th profile, with εi j ∼ N (0,σ2
ε ), f (xi j ) represents the

overall PA profile and ξi (xi j ) is a smooth function for the i th profile, representing the random difference between

the i th C S curve and the PA curve. Both f (xi j ) and ξi (xi j ) can be approximated by a p-spline regression.

For example, the polynomial basis of order p can be used to approximate f (xi j ) and ξi (xi j ), though other basis

can be utilized as well, as

f (xi j ) ≈β0 +
p∑

l=1
βl x l

i j +
K1∑

k=1
uk (xi j −κk )p

+ i = 1,2, . . . ,m j = 1,2, . . . ,ni (9)
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where β1,β2, . . . ,βp are the non-penalized coefficients for the p th order polynomial. The up1,up2, . . . ,upK are

the coefficients for the truncated polynomial basis, the spline portion of the model where
∑K1

k=1 u2
k ≤ const ant .

K1 is the number of knots used in the spline portion of the PA curve. The (x)p
+ are known as truncated power

functions. See Ruppert et al. (2003) for thorough discussion on the truncated power basis and other basis func-

tions. A convenient equivalent numerical representation of the p-spline in (9) is to consider (9) as a LM model

where the ni vectors xT
ij = (1 xi j x2

i j ...xp
i j ) are the ni rows of Xi in (9), βT = (β0 β1 . . .βp ), the ni vectors zT

ij =
((xi j −κ1)p

+, . . . , (xi j −κK1 )p
+) are the ni rows of Zi , and uT = (u1 u2 . . .uK1 ) where u ∼ M N (0,σ2

u I ). This represen-

tation allows any p-spline model to be computed efficiently using a basic LM model program contained on most

available statistical software packages. Using this equivalent representation, the p-spline for ξi (xi j ) is

ξi (xi j ) ≈ bi 0 +
p∑

l=1
bi l x l

i j +
K2∑

k=1
ti k (xi j −κk )p

+ i = 1,2, . . . ,m j = 1,2, . . . ,ni (10)

where p is the order of the polynomial basis with (bi 0,bi 1, . . . ,bi p )T ∼ M N (0,
∑

b), and ti k ∼ N (0, σ2
t I ), for i th

profile, and K2 is the number of knots for the C S curves. In model (8), each C S profile has four parts: a PA com-

ponent ( f (xi j )) and the “difference between the i th C S curve and the PA curve” component. Each of these com-

ponents can be approximated by p-spline regression curves consisting of a parametric component and a spline

component. The random “difference” component can be approximated by (10), where in model (10), the i th pro-

file has two parts: the random parametric component is bi 0 +∑p
l=1 bi l x l

i j , and the random spline component is∑K2
k=1 ti k (xi j −κk )p

+.

Utilizing the relationship between mixed models and p-spline regression, the approximation to model (8) can

be described succinctly in the mixed model framework for the i th profile as

yC S,i = Xiβ+Zi u+Xi bi +Ei ti +εi i = 1,2, . . . ,m (11)

where bi = [bi 0,bi 1, . . . ,bi p ]T , and ti = [ti 1, ti 2, . . . , ti K2 ]T . It is not necessary for K1, the number of knots for the PA

profile, to be equal to K2. Note, our method does not require equal number or location of knots across each of the

C S curves. However, for computational convenience both the number and location of knots are chosen to be the

same in this paper. In addition, the ni vectors ei j = ((xi j −κi
1)p

+, . . . , (xi j −κi
K2

)p
+) are the ni row of the (ni ×κK2 )

random effects design matrix is given by Ei . Model (11) also can be written in a stacked matrix notation as follows

y = Xβ+Z B+ε (12)

where X and β are as defined in Section 2 and

Z =



Z1 X1 0 . . . 0 E1 . . . . . .0

Z2 0 X2 . . . 0 0 E2 . . . 0
...

... . . . . . .
...

... . . . . . . . . . . . .
...

Zm 0 0 . . . Xm . . . . . . . . .Em

 , B =


u

b

t

 ,

with u = [u1,u2, . . . ,uK1 ]T , b = [b1,b2, . . . ,bm]T , t = [t1p ,t2p , . . . ,tmp ]T , and
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Cov(B) ≡G =


σ2

u IK1×K1 0 0

0 σ2
b Im×m 0

0 0 σ2
t IK2×K2

 where σ2
u controls the amount of smoothing to estimate

f (xi j ), σ2
b measures the between profiles variation, σ2

ε measures the within profile variation, and σ2
t controls the

amount of smoothing required to estimate ξi (xi j ). Now, β̂ can be obtained by using the formulas in (3) and B̂ as in

(13). For example,

B̂ = [û, b̂, t̂]T =G Z T V −1(y−X β̂) (13)

with V = ZG Z T +σ2
ε I with G as given above.

Then the estimated PA curve using p-spline regression is given by

ŷPS
PA = Xi β̂+Zi û (14)

and the estimated C S curve for the i th profile is

ŷPS
C S,i = Xi β̂+Zi û+Xi b̂i +Ei t̂i i = 1,2, . . . ,m (15)

where ŷPS
C S,i is the p-spline regression estimator for the i th profile response.

3.2 Determine Outlying Profile(s)

For the mixed effect p-spline regression approach we introduce two methods for determining abnormal pro-

files using the T 2 statistic. In the first method the T 2 statistics are based on the fitted profile values as

T 2
N P1,i = (ŷPS

C S,i − ŷPS
PA)T V̂ −1(ŷPS

C S,i − ŷPS
PA) i = 1,2, . . . ,m (16)

where ŷPS
C S,i is the C S curve fit for the i th profile obtained at n′ evenly spaced regressor locations, beginning with

the minimum value of the regressor and ending at the maximum value of the regressor. The “PS” means that, all fits

were obtained using the mixed p-spline regression model as given in Equation (15). The nonparametric PA curve

fit is ŷPS
PA for all the HDS as given in Equation (14) and V̂ is an (n′×n′) appropriately estimated variance-covariance

matrix for the ŷPS
C S,i , such as V̂D .

In the second method, we use the φ̂i vectors to calculate the T 2 statistics, where

φ̂i = [b̂i , t̂i ]T i = 1,2, . . . ,m (17)

with b̂i = [b̂i 0, b̂i 1, . . . , b̂i p ]T and t̂i = [t̂i 1, t̂i 2, . . . , t̂i K2 ]T . If the locations of the regressor values and the number of

observations at each location are the same across all m profiles (a common occurrence for profile data obtained

from designed experiments), then the T 2 statistic can be based on the estimated predicted random effects, as these

represent the possible differences in the m profiles. The T 2 statistics will be denoted by T 2
N P2,i and given by

T 2
N P2,i = (φ̂i − φ̄)T [

∑m−1
i=1 (φ̂i+1 − φ̂i )(φ̂i+1 − φ̂i )T

2(m −1)
]−1(φ̂i − φ̄) i = 1,2, . . . ,m (18)
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where φ̄=
∑m

i=1 φ̂i

m and V̂D is the estimated variance-covariance matrix. The unusual profile(s) can be determined by

comparing T 2
N P1,i or T 2

N P2,i with a value from χ2-distribution where the profile will be marked as outlying if its cor-

responding T 2 statistic value is large. That is, T 2
N P,i ≥ χ2

(d f ,α) for i = 1,2, . . . ,m, where α represents the significance

level, d f represents the appropriate degrees of freedom, an issue discussed in Section 5.

Despite the possibility of less bias for the estimated mean response resulting from using the N P methods for

mixed models, there is a strong possibility of greater variance in estimating mean response than obtained by a

correctly specified parametric model. Mixed model robust regression (M MRR), a hybrid combination of the fits

obtained by parametric LM and N P mixed models, has been shown to minimize the integrated mean square error

of fits when compared to the parametric LM and N P mixed method, while retaining important features of the data

(Waterman et al., 2007). For these reasons, we extended the M MRR procedure to the area of profile monitoring

in Phase I analysis as discussed in the following section. This second approach is named "mixed model robust

profile monitoring (M MRP M)" and is obtained by incorporating a mixed model approach to both the parametric

and the N P model fits.

4 MIXED MODEL ROBUST PROFILE MONITORING METHOD

Mixed model robust profile monitoring (M MRP M) can be considered as an extension of model robust regression

(MRR), see Mays et al. (2001), to quality control applications. The development of M MR is motivated by the need

to improve upon the shortcomings of the parametric method that may result in high bias due to model misspec-

ification. In addition, the N P method may introduce high variance of fit possibly resulting from an estimated

curve that fits the data too closely. MRR has been successfully applied to a broad variety of models and situations

including linear normal-theory based regression (Mays et al. (2001)), logistic regression (Nottingham and Birch

(2000)), simultaneous modeling of the mean and variance functions (Robinson et al. (2010)), (Pickle et al. (2008)),

the multi-response optimization problem (Wan and Birch (2010)), and the LM model (Waterman et al. (2007)).

In M MRP M , two separate fits are combined to get the final fits for the PA and the m profiles. In M MRP M , we

assume that the user has some information about the underlying profiles from which data have been generated

and that a parametric model can be formed that provides a reasonable fit to certain portions of the data but fails

to adequately fit the data in other parts. That is, the parametric model has been misspecified. Relying on an N P

profile entirely results in loss of information about the profile and possibly subjects the results to highly variable

fits. Specifically, the M MRP M fit for the PA profile is

ŷM MRP M
PA = (1− λ̂)ŷP

PA + λ̂ŷN P
PA (19)

where ŷP
PA is the PA fit from the parametric LM model using an appropriate estimation method. The ŷN P

PA is an N P

mixed model fit for the PA profile using the mixed p-spline regression method, as described in Section 3.1 and λ̂

is the estimated mixing parameter, a number between zero and one. From (19), one can observe that λ̂ should be
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zero for the correctly specified model where M MRP M will reduce to the parametric model. The value of λ̂ should

be small if the parametric model is not badly misspecified and be large for a more misspecified model. λ̂ should

be close to one for a badly misspecified model. In this case, M MRP M will reduce to the N P model. For most

practical situations, λ̂ is an unknown and must be chosen as a function of the data.

The M MRP M fit for the i th C S profile is

ŷM MRP M
C S,i = (1− λ̂)ŷP

C S,i + λ̂ŷN P
C S,i i = 1,2, . . . ,m (20)

where ŷP
C S,i is the C S fit from the parametric LM model for the i th profile, and ŷN P

C S,i is an N P mixed model fit for

the i th profile. The estimated mixing parameter (λ̂), as shown in Waterman et al. (2007), can be obtained for the

C S fit as

λ̂=
(ŷN P

i ,−i − ŷP
i ,−i )T (y− ŷP

C S )

(ŷN P
C S − ŷP

C S )T (ŷN P
C S − ŷP

C S )
, (21)

where ŷN P
i ,−i and ŷP

i ,−i indicate the N P and parametric fits , respectively, for the i th profile without the i th profile.

Waterman et al. (2007) showed through a series of Monte-Carlo (MC ) simulations that when (21) is used as the esti-

mator of λ, a LM model specified correctly results in a MRR estimate equal to or nearly equal to the parametric fit.

If the LM model is badly misspecified, the MRR estimate is the same or nearly equal to the N P fit. The simulation

results also showed that the MRR fit is superior to a separate parametric LM model fit or a separate N P model fit

under moderate model misspecification in terms of the minimum mean square error of fit criteria. Consequently,

we expect the MRR technique to be successful in improving results obtained by a misspecified parametric model

when applied to the profile monitoring situation. Our speculation is justified by the MC results shown in Section

5.

The M MRP M T 2 statistic for the fitted semiparametric LM models, using the estimated PA profile (ŷM MRP M
PA ),

the estimated C S profiles (ŷM MRP M
C S,i ), and the estimated variance-covariance matrix (V̂ ) for the C S profiles, is de-

noted by T 2
M MRP M1,i . The M MRP M T 2 statistics are given by

T 2
M MRP M1,i = (ŷM MRP M

C S,i − ŷM MRP M
PA )T V̂ −1(ŷM MRP M

C S,i − ŷM MRP M
PA ) i = 1,2, . . . ,m (22)

where (V̂ ) can be replaced by (V̂D ) for the C S fits. The unusual profile(s) can be determined by comparing T 2
M MRP M1,i

with the appropriate value from the χ2-distribution. A profile will be marked as outlying if T 2
M MRP M1,i ≥χ2

(d f2,α) for

i = 1,2, . . . ,m, where d f2 represents the degrees of freedom associate with the M MRP M fits which is the difference

between estimated number of model parameters in the C Si and PA models. The calculation of d f2 is discussed in

Section 5.

Another version for the M MRP M T 2 statistics is based on a convex combination of the estimated random

effects from the parametric and N P approaches. Let ψ̂i refers to the convex combination of the estimated random

effects via the estimated mixing parameter (λ̂) where

ψ̂i = [(1− λ̂)b̂i , λ̂φ̂i ]T i = 1,2, . . . ,m (23)
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with b̂i is the estimated random effects obtained parametrically as in Equation (4) and φ̂i represents the estimated

random effects obtained via the mixed p-spline as given in Equation (17).

The M MRP M T 2 statistics can be obtained based on ψ̂i as these give the possible differences in the m profiles.

We refer to as T 2
M MRP M2,i which is given as

T 2
M MRP M2,i = (ψ̂i − ψ̄)T [

∑m−1
i=1 (ψ̂i+1 − ψ̂i )(ψ̂i+1 − ψ̂i )T

2(m −1)
]−1(ψ̂i − ψ̄) i = 1,2, . . . ,m (24)

where ψ̄ =
∑m

i=1 ψ̂i

m . The abnormal profile(s) can be determined by comparing T 2
M MRP M2,i with a value from χ2-

distribution where the profile will be marked as outlying if T 2
M MRP M2,i ≥ ((1− λ̂)∗UC LPar + λ̂∗UC LN P ) for i =

1,2, . . . ,m, where UC LPar represents the upper control limit for the parametric method, and UC LN P represents

the upper control limit for the N P method. The estimated mixing parameter is λ̂ as in Equation (21).

Section 5 gives the results of a Monte-Carlo simulation study to compare the simulated integrated mean square

(SI MSE) and the simulated probability of signal of the parametric, N P and semiparametric approaches.

5 A MONTE-CARLO STUDY

Monte Carlo simulation methods are employed to generate a specific number of correlated and uncorrelated data

sets and calculate the desired criteria. In the examples studied here, the model is similar to that used in Waterman

et al. (2007) with an extra random effect (bi 3) to give more variability for each C S profile. The data generated from

the cluster specific (C S) model is

yi j = (5+bi 1)xi j + (2+bi 2)(xi j −5.5)2 +γ[10sin(
π(xi j −1)

2.25
)+bi 3]+εi j

i = 1,2, . . . ,m j = 1,2, . . . ,n (25)

where yi j is the simulated response for the j th observation from the i th profile at xi j . The single regressor X takes

on integer values from one to ten, inclusive. The random effects are bi 1, bi 2 and bi 3, which are generated inde-

pendently from the normal distribution with mean zero and variance 0.5. The random errors εi j are assumed to

follow a normal distribution with mean zero and variance-covariance matrix (R).The variance-covariance matrix

R will take on several forms. For the uncorrelated data case, R will equal σ2I , where σ2 is the error variance and

I is the identity matrix. For the correlated data case, R will incorporate the form of the first-order autocorrelation

matrix, σ2 AR(1), with cor r (εi j ,εi j+1) = ρ.

The population average (PA) model can be expressed as

yi j = 5xi j +2(xi j −5.5)2 +γ[10sin(
π(xi j −1)

2.25
)]+εi j (26)

However, the user will assume that the data are generated from the quadratic model

yi j = (β0 +bi 0)+ (β1 +bi 1)xi j + (β2 +bi 2)x2
i j +εi j (27)

10



The random effects are bi 0, bi 1 and bi 2, are generated independently from the normal distribution with mean zero

and variance 0.5. The true model is the one given in Equation (25), where the trigonometric component times

γ, the misspecification parameter, serves as the amount of model misspecification. The user’s model equals the

true model at γ equals zero, the case where there is no model misspecification. Otherwise, the model has been

misspecified, and the degree of misspecification increases with γ.

The parametric, nonparametric (N P ), and semiparametric approaches were utilized to fit the C S profiles. The

parametric approach used a second order polynomial mixed model. The N P approach used the mixed p-spline

regression model as described in Section 3. The semiparametric approach utilized our M MRP M method, com-

bining the parametric and N P models via a mixing parameter λ, as described in Section 4. The S AS code for this

simulation study has been written by the authors and available upon request.

To keep the number of scenarios reasonably manageable, the study considers different values for the num-

ber of profiles (m = 30,60), profile size (n = 10,20), ρ = (0,0.2,0.8), and varying degrees of misspecification (γ =
0,0.25,0.5,0.75,1). For the n = 10 and n = 20 cases, the design points are selected as equally space along the inter-

val from 1 to 10.

For comparing our methods with the parametric method, the simulated integrated mean square (SI MSE) and

the simulated probability of signal have been used. The SI MSE was calculated as

SI MSE = 1

m
(ŶC S,i −µC S,i )T (ŶC S,i −µC S,i ) (28)

at 46 equally spaced design points (values 1 to ten by 0.2), as an arbitrary number of points picked large enough to

detect all differences in curves between the minimum and the maximum values for X . The SI MSE quantifies the

amount by which an estimator (ŶC S,i ), for the i th profile, differs from the true mean response value of the quantity

being estimated (µC S,i ). The SI MSE values were calculated for the C S using the parametric, N P , and M MRP M

approaches.

The probability of signal is calculated as the proportion of simulated datasets where a signal occurred. That

is, a signal is given when at least one of the mT 2 statistics exceeds the control limit. For the parametric approach,

we consider the quadratic polynomial regression model with two random effects, one for linear and one for the

quadratic term. Notice that, the true model, as in Equation (25), contains three random effects, but when the

user’s model includes all three random effects, the third random effect can not be estimated for the data situations

considered in our simulation. For the N P approach, the mixed linear p-spline regression model using the first

order radial basis function (Ruppert et al. (2003)), with one random effect on the slope is considered.

We consider various amounts of misspecification ranging from γ equal to 0 (no misspecification), 0.25, 0.5,

0.75 and 1. A plot of the PA models using different values for γ is given in Figure 1.

In Figure 1, the sold black line (γ = 0) occurs when the user’s model equals the true model. The dashed gray

curve represents the most misspecification in the PA, when γ= 1. The larger disparity between the γ= 0 and γ= 1

models should be reflected in the SI MSE and simulated probability of signal from the simulation study.

In this simulation, uncorrelated and correlated data sets are generated from different scenarios. The parameter

estimation techniques, the probability of signals for each method requires substantial computing resources. In
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Figure 1: Plot of PA underlying models ( gamma (γ) is the misspecification parameter).

an effort to achieve a compromise between extensive use of computational resources and obtaining sufficient

precision of Monte Carlo results, 1,000 Monte Carlo replications were employed for each unique combination of

our Monte Carlo design factors.

Six T 2
i statistics, two each for the parametric, N P and semiparametric methods based on the fitted values and

based on the estimated random effects, are computed for each Monte Carlo replication. Once the distribution of

each T 2
i statistic is obtained, an upper control limit (UC L) corresponding to an overall probability of false alarm (α)

may be calculated. Hence, we need the joint distribution of the T 2
i statistics. However, the m T 2

i values within each

method are correlated, since each T 2
i statistic, (i = 1,2, ...,m) is based on the same estimated mean and variance-

covariance matrix, thus making the joint distribution of the T 2
i value difficult to obtain.

As an alternative Williams et al. (2006), and Jensen et al. (2008) suggested using an approximated joint distri-

bution assuming the T 2
i statistic values are independent. We follow their suggestion here. Let α be the probability

of a false alarm for any individual T 2
i statistic, then the approximate overall probability of a false alarm for a sam-

ple of m independent statistics is αover al l = 1− (1−α)m . Thus, for a given overall probability of a false alarm, we

use α = 1− (1−αover al l )
1
m in calculation of UC Ls. Jensen et al. (2008) found that UC Ls based on this approach

performed well. When using the asymptotic chi-squared distribution of each T 2
i , the UC L is given by

UC Lχ2 =χ2
(1−α,d f ) (29)

where χ2
(1−α,d f ) is the (1−α) quantile of a χ2

(d f ) distribution, and d f represents the degrees of freedom. The d f for

the parametric approach is given as the number of random effects in the estimated parametric model. For the N P

approach, the d f is the number of random effects plus the number of knots. The simulation results show that using

the chi-square distribution as an approximation to the actual distribution of each T 2
i along with above mention
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values for the d f works very well for the parametric and N P approaches. However, for the M MRP M method, the

simulation results show that the chi-square approximation works well when the value of d f is adjusted to depend

on the degree of correlation existing among the error terms. That is, for independent and low correlated errors

(ρ = 0 or 0.2), d f is calculated as the degrees of freedom for the parametric approach plus the degrees of freedom

for the N P approach. For high correlated errors, d f is computed as a convex combination of the parametric and

N P degrees of freedom, where λ̂ is the coefficient for the N P degrees of freedom. In this study, the probability of

signal for the in-control dataset is 0.05, the nominal value.

In the results that follow, the SI MSE and the probability of signal for the in-control and the out-of-control sit-

uations for the uncorrelated scenarios with different combinations of m, n, and different levels of misspecification

were calculated.

5.1 Simulation Results

In this section, the SI MSE and the simulated probability of signal for the out-of-control scenario are estimated

for the uncorrelated error structure situation where ρ = 0. The SI MSE from estimating C S curves are obtained us-

ing the parametric (Par ), the N P , and the semiparametric (M MRP M) methods. We show here the SI MSE and the

probability of signal for in-control and out-of-control scenarios with various degrees of misspecified parametric

models.

Table 1 contains the estimated average mixing parameter ( ¯̂λ) and the SI MSE values corresponding to a given

degree of misspecification for the independence case. The first and second columns give the number of profiles

(m) and profile size (n), respectively. The third column contains the degree of misspecification (γ). The average

estimated mixing parameter ( ¯̂λ) is given in the fourth column. Columns five through seven contain the SI MSE

from the parametric (Par ), N P and M MRP M methods, respectively.

The values in bold represent the smallest SI MSE values. The values in brackets represent the Monte Carlo

standard errors using 1,000 replications. All of the results in Table 1 were as expected. As the number of observa-

tions per profile (n) increases, the SI MSE for each method decreases, as more observations will result in estimates

that will be more precise. There is a smaller decrease for the SI MSE from the parametric C S fits as n increases

especially for the misspecified model. Of most interest is the behavior of SI MSE as a function of γ. For γ= 0, the

correct model specification case, the SI MSE for the parametric and the M MRP M methods are identical (or nearly

so).

For large values of γ, the most severe model misspecification case, the N P and M MRP M methods are iden-

tical (or nearly so). As indicated by the average λ̂, the M MRP M method is mostly or all composed of the N P

method. For intermediate values of γ, the mild model misspecification case, the M MRP M method performs bet-

ter than either the parametric or the N P method. Thus, the claim that the M MRP M method is robust to model

misspecification is supported by this simulation. Additionally, the main advantage of the M MRP M over either the

parametric or the N P methods occurs when the user’s model is partially correct and provides a reasonable but not

wholly satisfactory fit to the data.
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Table 1: SI MSE and average λ̂ across m, n, and γ. Monte Carlo standard errors in parenthesis. Best values in bold.

m n γ ¯̂λ Par NP MMRPM

0.00 0.03 2.51 (0.45) 4.04 (0.57) 2.50 (0.45)

0.25 0.10 5.45 (0.46) 7.29 (0.65) 5.40 (0.45)

30 10 0.50 0.57 14.42 (0.53) 12.21 (0.81) 11.86 (0.61)

0.75 0.92 29.72 (0.78) 9.58 (0.94) 9.55 (0.92)

1.00 1.00 51.71 (1.28) 11.15 (1.02) 11.15 (1.02)

0.00 0.02 1.25 (0.22) 2.07 (0.32) 1.25 (0.22)

0.25 0.20 4.24 (0.25) 5.04 (0.35) 4.15 (0.25)

30 20 0.50 0.96 13.26 (0.28) 8.71 (0.46) 8.71 (0.46)

0.75 0.98 28.38 (0.37) 5.44 (0.47) 5.44 (0.47)

1.00 1.00 49.73 (0.53) 6.65 (0.50) 6.65 (0.50)

0.00 0.02 2.50 (0.32) 4.04 (0.42) 2.50 (0.32)

0.25 0.10 5.47 (0.35) 7.44 (0.45) 5.43 (0.33)

60 10 0.50 0.56 14.39 (0.36) 12.20 (0.56) 11.80 (0.42)

0.75 0.92 29.65 (0.52) 9.58 (0.87) 9.57 (0.66)

1.00 1.00 51.57 (0.85) 11.16 (0.73) 11.16 (0.73)

0.00 0.01 1.26 (0.17) 2.07 (0.22) 1.26 (0.17)

0.25 0.20 4.26 (0.17) 5.03 (0.25) 4.17 (0.17)

60 20 0.50 0.97 13.27 (0.20) 8.70 (0.33) 8.70 (0.33)

0.75 0.98 28.38 (0.27) 5.44 (0.35) 5.44 (0.35)

1.00 1.00 49.69 (0.39) 6.61 (0.36) 6.61 (0.36)

Next, consider the simulated probability of signal for the in-control scenario. The T 2
Par 1,i , T 2

N P1,i , and T 2
M MRP M1,i

as in Equations (7), (16) and (22), respectively, are calculated from the parametric, the N P , and the M MRP M meth-

ods, respectively, using the fitted values for the C S profile at n′ = 46 observations for each profile. Also, T 2
Par 2,i ,

T 2
N P2,i , and T 2

M MRP M2,i as in Equations (6), (18) and (24), respectively, are calculated based on the estimated ran-

dom effects from all three approaches; parametric, N P , and M MRP M , respectively.

Table 2 shows the proportion of the 1,000 datasets that had a signal on the control charts for various T 2 statis-

tics for the in-control scenario and correct model specification (γ = 0). The UC L were calculated based on the

approximate chi-squared distributions with the d f chosen as described above. In Table 2, the first and second

columns give the number of profiles (m) and the number of observations per profile (n), respectively. The third

column presents the true autoregressive coefficient values (ρ). Columns four, five and six contain the simulated

probability of signal from the T 2 statistics using the fitted values from the parametric (T 2
Par 1,i ), the N P (T 2

N P1,i ),

and the semiparametric (T 2
M MRP M1,i ) approaches, respectively. The simulated probability of signals from the T 2
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statistics based on the estimated random effects utilizing the parametric (T 2
Par 2,i ), the N P (T 2

N P2,i ), and the semi-

parametric (T 2
M MRP M2,i ) approaches are given in the seventh, eighth, and ninth columns, respectively.

Table 2: Proportion of data sets with a signal for in-control scenario using the chi-squared distribution based on

d f (degrees of freedom). The nominal value is 0.05.

T 2 based on the fitted values T 2 based on the ebl ups

m n ρ T 2
Par 1,i T 2

N P1,i T 2
M MRP M1,i T 2

Par 2,i T 2
N P2,i T 2

M MRP M2,i

0.0 0.034 0.037 0.02 0.034 0.037 0.03

30 10 0.2 0.035 0.032 0.01 0.035 0.034 0.02

0.8 0.034 0.042 0.034 0.034 0.035 0.037

0.0 0.035 0.04 0.013 0.035 0.049 0.034

30 20 0.2 0.035 0.046 0.01 0.035 0.044 0.024

0.8 0.036 0.038 0.037 0.036 0.037 0.041

0.0 0.047 0.054 0.01 0.047 0.053 0.031

60 10 0.2 0.049 0.048 0.003 0.049 0.047 0.019

0.8 0.047 0.048 0.047 0.047 0.040 0.047

0.0 0.047 0.044 0.01 0.047 0.043 0.030

60 20 0.2 0.046 0.046 0.004 0.046 0.043 0.010

0.8 0.039 0.042 0.039 0.039 0.042 0.039

We see from Table 2 that for the in-control situation, it appears that the T 2
Par 1,i and T 2

Par 2,i statistics for the

parametric approach based on the fitted values and the estimated random effects, respectively, give the same

probability of signal for the in-control situation. This is true for all values of m, n, and ρ. The results are expected

since the two T 2
Par,i statistics are identical.

We note that the use of T 2
Par 1,i , T 2

Par 2,i , T 2
N P1,i and T 2

N P2,i statistics give a probability of signal closer to the

nominalα level (α= 0.05) and that the statistics based on the semiparametric approach have smaller probabilities,

sometimes much smaller, than those based on the parametric and N P approaches. Furthermore, the T 2
M MRP M1,i ,

and T 2
M MRP M2,i statistics give a probability of signal much smaller than the nominal α level for all values of m.

Hence, more work is needed in this area to determine a better approximation for the UC L.

Next we consider the simulated probability of signal for the data that is generated from an out-of-control pro-

cess for the uncorrelated errors case. The power studies were performed by introducing a step change (δ) in the

mean vector, β, with different levels of model misspecification parameter (γ). Since the estimated probability of

signal is not always 0.05 for the in-control data, the power studies were based on a simulated control limit to ensure

that the probability of signal for in-control data will be the same for all charts and equal to the nominal 0.05 level.

For the generated data for m profiles, the first l of them were generated from the in-control distribution using

the model as given in Equation (25) with β = (β1,β2)T = (5,2)T , and the last m − l were generated from the same
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model and same settings of the design factors, except that β = (β1,β∗
2 )T = (5,2+δ)T , where δ = 1,2, and 4, with

δ = 1 referring to a small shift and δ = 4 representing a large shift. Therefore, we have introduced a step change

in the mean coefficient vector (for the quadratic term and consequently in the linear term), causing the last m − l

profiles to be shifted away from the first l profiles with different sizes for the shift. In addition, several values of

l have been tried, and we found that the probability of signal did not depend much on the value of l . Here, we

present the results for l = 20 when m = 30 and l = 40 when m = 60.

Tables 3, 4 , 5 , and 6 give the simulated probability of the out-of-control signal by utilizing our six T 2 statistics

for different combinations of m and n. In these tables, the first column gives the degree of misspecification (γ) and

the size of the shift is given in the second column. The third through the fifth columns give the simulated prob-

ability of signal of the out-of-control situation using the parametric (Par ), N P , and semiparametric (M MRP M)

methods based on the fitted values for the C S profiles, respectively. The simulated probability of signal for the

out-of-control scenario obtained via Par , N P , and M MRP M methods based on the estimated random effects

(ebl ups) are given in the sixth, seventh, and eighth columns, respectively.

Table 3: Simulated probability of signal for out-of-control scenario for independent data set using the six T 2 statis-

tics with different values of misspecification and shifts for m = 30, n = 10 and l = 20. Best values in bold.

T 2 based on the fitted values T 2 based on the ebl ups

γ Shift T 2
Par 1,i T 2

N P1,i T 2
M MRP M1,i T 2

Par 2,i T 2
N P2,i T 2

M MRP M2,i

0 0.050 0.050 0.050 0.050 0.050 0.050

1 0.183 0.176 0.142 0.183 0.117 0.153

0.00 2 0.569 0.520 0.429 0.569 0.258 0.438

4 0.979 0.961 0.904 0.979 0.376 0.837

1 0.184 0.352 0.400 0.184 0.274 0.454

0.25 2 0.571 0.715 0.723 0.571 0.454 0.777

4 0.979 0.983 0.976 0.979 0.626 0.971

1 0.184 0.610 0.600 0.184 0.526 0.697

0.50 2 0.568 0.874 0.861 0.568 0.692 0.930

4 0.983 0.998 0.994 0.983 0.921 0.984

1 0.182 0.951 0.852 0.182 0.926 0.950

0.75 2 0.564 0.996 0.968 0.564 0.973 0.991

4 0.978 1.000 1.000 0.978 0.996 0.998

1 0.185 0.949 0.856 0.185 0.932 0.834

1.00 2 0.558 0.996 0.966 0.558 0.972 0.992

4 0.975 1.000 1.000 0.975 0.994 0.993

Comparison of Table 3 to 5 and Table 4 to 6 shows that as the number of profiles (m) increases, the simulated
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Table 4: Simulated probability of signal for out-of-control scenario for independent data set using the six T 2 statis-

tics with different values of misspecification and shifts for m = 30, n = 20 and l = 20. Best values in bold.

T 2 based on the fitted values T 2 based on the ebl ups

γ Shift T 2
Par 1,i T 2

N P1,i T 2
M MRP M1,i T 2

Par 2,i T 2
N P2,i T 2

M MRP M2,i

0 0.050 0.050 0.050 0.050 0.050 0.050

1 0.183 0.141 0.132 0.183 0.110 0.151

0.00 2 0.572 0.474 0.388 0.572 0.218 0.413

4 0.982 0.958 0.893 0.982 0.323 0.843

1 0.184 0.310 0.409 0.184 0.237 0.429

0.25 2 0.570 0.665 0.751 0.570 0.393 0.796

4 0.982 0.988 0.993 0.982 0.584 0.996

1 0.183 0.539 0.401 0.183 0.441 0.417

0.50 2 0.566 0.847 0.757 0.566 0.634 0.695

4 0.983 1.000 1.000 0.983 0.990 0.986

1 0.185 0.919 0.839 0.185 0.903 0.813

0.75 2 0.566 0.991 0.977 0.566 0.958 0.908

4 0.982 1.000 1.000 0.982 0.991 0.989

1 0.188 0.920 0.843 0.188 0.898 0.876

1.00 2 0.564 0.993 0.975 0.564 0.957 0.943

4 0.982 1.000 1.000 0.982 0.995 0.989

probability of signal of the out-of-control situation increases for all the methods that are presented here for most

of the γ and shift values, especially for the moderate and large shifts. The N P method based on the fitted values

gives a higher probability of signal than the one based on the estimated random effects. This result is due to the

greater amount of information regarding differences between each C S curve and the PA curve contained in the

fitted values than contained in estimated random effects.

Another important observation from the above Tables 3, 4, 5 and 6 is that the performances of the M MRP M

methods based on either the fitted values or the eblups are much closer to each other and are superior to the

parametric and N P methods for the various degrees of model misspecification. In addition, the performance of

the N P method improves as the number of observations per profile increases, since the N P fits become more

accurate when the response variable is observed at more values of the regressor variable. By comparing Tables

5 with 6, it can be seen that, as n increases, the simulated probability of signal for the out-of-control situation

increases over most of the combinations of γ and shift.

From the simulation study results for the uncorrelated data scenario, we conclude that the method that has

the best fits, as measured by SI MSE , has the highest probability of signal values. Consequently, the parametric
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Table 5: Simulated probability of signal for out-of-control scenario for independent data set using the six T 2 statis-

tics with different values of misspecification and shifts for m = 60, n = 10 and l = 40. Best values in bold.

T 2 based on the fitted values T 2 based on the ebl ups

γ Shift T 2
Par 1,i T 2

N P1,i T 2
M MRP M1,i T 2

Par 2,i T 2
N P2,i T 2

M MRP M2,i

0 0.050 0.050 0.050 0.050 0.050 0.050

1 0.159 0.130 0.125 0.159 0.087 0.134

0.00 2 0.627 0.532 0.462 0.627 0.225 0.471

4 0.999 0.998 0.982 0.999 0.429 0.967

1 0.159 0.281 0.363 0.159 0.206 0.405

0.25 2 0.622 0.721 0.790 0.622 0.417 0.849

4 0.999 0.998 0.998 0.999 0.671 0.999

1 0.155 0.492 0.594 0.155 0.406 0.615

0.50 2 0.620 0.871 0.912 0.620 0.640 0.947

4 0.999 0.999 1.000 0.999 0.964 1.000

1 0.156 0.907 0.812 0.156 0.858 0.925

0.75 2 0.621 0.988 0.974 0.621 0.948 0.999

4 0.999 1.000 1.000 0.999 0.999 1.000

1 0.154 0.900 0.811 0.154 0.862 0.844

1.00 2 0.616 0.988 0.983 0.616 0.955 0.954

4 0.999 1.000 1.000 0.980 0.999 0.994

method has the highest probability of signal values when γ is zero, regardless of the size of the shift. The M MRP M

is competitive with the parametric, and N P is competitive when using the fitted values but not when using the

eblups. When γ is large, M MRP M and N P are very similar in probability of signal values across all values of shift,

and values of n,m, and type of T 2. The parametric has very poor probability of signal values, especially for small

shifts, being competitive only if the size of the shift is large. When γ is intermediate, M MRP M is clearly superior

over the N P and parametric methods, although when the size of the shift is large, all methods give very similar

values of probability of signal. Apparently, if the size of the shift is large enough, all these methods work about the

same. Consequently, even if the model fits the data poorly the shift can still be detected. Once again, the main

advantage of the M MRP M is its ability to utilize information contained in the parametric model with information

picked up by the N P model to work well in terms of fitting the data and well in terms of making decisions about

the data regardless of the degree of model misspecification in the parametric model. The impact of changing m or

n, over the values we have chosen is minimal compared to the shift effect and the γ effect.

A power study was performed using AR(1) structure on the random errors with a low correlation (ρ = 0.2) and

a high correlation (ρ = 0.8) to compare the parametric, the N P and the semiparametric approaches. The user’s
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Table 6: Simulated probability of signal for out-of-control scenario for independent data set using the six T 2 statis-

tics with different values of misspecification and shifts for m = 60, n = 20 and l = 40. Best values in bold.

T 2 based on the fitted values T 2 based on the ebl ups

γ Shift T 2
Par 1,i T 2

N P1,i T 2
M MRP M1,i T 2

Par 2,i T 2
N P2,i T 2

M MRP M2,i

0 0.050 0.050 0.050 0.050 0.050 0.050

1 0.157 0.135 0.117 0.157 0.118 0.147

0.00 2 0.631 0.553 0.454 0.631 0.268 0.470

4 0.999 0.997 0.993 0.999 0.502 0.970

1 0.156 0.291 0.403 0.156 0.264 0.417

0.25 2 0.635 0.736 0.820 0.635 0.482 0.877

4 0.999 1.000 1.000 0.999 0.756 1.000

1 0.160 0.490 0.407 0.160 0.497 0.517

0.50 2 0.630 0.880 0.815 0.630 0.711 0.741

4 0.999 1.000 1.000 0.999 0.901 0.996

1 0.153 0.904 0.850 0.153 0.902 0.890

0.75 2 0.630 0.989 0.982 0.630 0.979 0.969

4 0.999 1.000 1.000 0.999 0.999 0.997

1 0.154 0.904 0.850 0.154 0.904 0.897

1.00 2 0.628 0.988 0.983 0.628 0.979 0.971

4 0.999 1.000 1.000 0.999 0.999 0.998

model also incorporates this AR(1) structure. Due to the space limitations, only the key results will be discussed

here. One concern in the correlated data scenario is whether the misspecification term influences the estimated

simulated probability of signal for the out-of-control situations to the same degree as for the uncorrelated scenario.

There are some key differences between the uncorrelated and correlated scenarios. On average, the SI MSE

values, for correlated error cases, increase as the correlation increases. For example, in the m = 30 with n = 20 case,

the SI MSE value for the parametric model at γ= 0 for ρ = 0, 0.2 and 0.8 are 1.25, 1.74 and 6.25, respectively. Recall

that, the mean square error of fits is the sum of the squared bias plus the variance of the fits when conditioned

on the values of the random effects. In the γ= 0 case, the bias is zero for the parametric and M MRP M methods,

hence the mean square error is the variance of the fit. If the sample size n remains fixed, and ρ increases, the

effective sample size decreases (as n remains fixed), so the variance must increase as ρ increases.

There are similarities between the uncorrelated case and the correlated errors structure cases. For γ = 0, the

parametric methods have the highest simulated probability of signal for the out-of-control and the M MRP M pro-

cedure obtains the simulated probability of signal values very close to the parametric simulated probability of

signal values. For γ = 1, the N P method have the highest simulated probability of signal and the M MRP M gives
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simulated probability of signal very close to the N P values. As γ increases from zero to one, the simulated proba-

bility of signal values for the M MRP M method are either the highest values (for low to moderate model misspec-

ification), or are very close in value to the “best” simulated probability of signal values. Also, it is observed that

as the number of profiles (m) increases the simulated probability of signal from the N P and M MRP M methods

increase for different shift sizes and various degrees of model misspecification. As the number of observations

per each profile (n) increases the power of the M MRP M method to detect the step shift gets better. In addition,

by increasing the degree of autocorrelation between errors the simulated probability of signal for the N P and

M MRP M methods increases. While as ρ increases the simulated probability of signal for the parametric method

decreases especially for the small and moderate shift sizes. In general, as ρ increases the performance of the N P

and M MRP M methods increases for all values of m and n.

In summary, when the degree of misspecification increases the semiparametric and N P approaches show

greater superiority over the parametric approach. We see that the semiparametric approach is always at least

equivalent to the parametric approach (for the correctly specified model) and often far superior. The M MRP M

and the N P approaches maintain a high probability of signal for data sets with correlated errors structures, a con-

dition common in longitudinal data sets.

6 THE AUTOMOBILE ENGINE APPLICATION

In this section, we apply our proposed methods to a “real world” profile monitoring problem. This application

from Amirhossein et al. (2010) concerns the automotive industry. The application is for the engine type TU 3

which are assembled for a French automobile, the Peugeot. In the study, the engine is run at different RP M values

and the corresponding torque values obtained. The torque produced by the engine is considered as response

variable and the corresponding speed RP M is considered as the explanatory variable. The profiles that describe

the relationship between torque and RP M should be similar, when the manufacturing process is in-control. An

engine with mechanical defects or any other issues will result in an outlying engine profile. Because there are

multiple RP M values obtained for each engine it is natural to try to apply a multivariate quality control procedure

to discover engines which would not be acceptable.

In this data set, we have a total of twenty-six engines as our historical data set (HDS) for Phase I analysis. For

each engine, 14 engine speed values are set to 1500, 2000, 2500, 2660, 2800, 2940, 3500, 4000, 4500, 5000, 5225,

5500, 5775, and 6000 RP M and the corresponding torque values are reported. Therefore, 14 points are collected

for each engine and form the engine profile of interest. The raw data set, with straight line segments connecting the

torque values, is shown in Figure 2. Figure 2 illustrates a typical automobile engine profiles. The data set contains

26 profiles each of which consists of 14 measurements along the profile. Within each engine, there is no replication

which means that there is a single measurement at each RP M . The raw data set contains some peaks and dips,

not easily captured by a purely parametric model. These curves are clearly nonlinear and thus new techniques to
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Figure 2: The raw data set for 26 automobile engines (Torque vs. RPM).

monitor these curves are desirable. Therefore, our two new approaches (N P and semiparametric) will be applied

to this data set.

In the next section, the relationship between torque and RP M of an engine will be modeled by the parametric,

N P and semiparametric (M MRP M) methods. In addition, the mean square error (MSE) is calculated for each

method.

6.1 Phase I Analysis

In a Phase I analysis, we have m quality profiles in the HDS. The main goal of the Phase I analysis is to estimate

process parameters based on an in-control process. The proposed approaches that we consider for this data set

will account for the autocorrelation within engines. These approaches (parametric, N P and semiparametric) can

be considered as methods for data reduction that enable the determination of outlying profiles.

The parametric approach using the mixed second order quadratic model in one regressor is

yi = (β0 +bi 0)+ (β1 +bi 1)x∗i + (β2 +bi 2)x∗2
i +εi i = 1,2, . . . ,26 (30)

where yi is the vector containing the torque values for the i th engine. The x∗i is a vector containing the centered

RP M values, x∗i = xi − x̄. Since the PRM s are fixed for each engine, we denote the RP M , xi j by simply xi . The εi

is the vector containing the errors for the i th engine. The parameters, β0,β1 and β2 are the fixed effects that are

common for all profiles. The bi 0,bi 1 and bi 2 are the random effects for the i th engine profile, and are unique for

each engine profile.

Because the random errors for each profile are likely to be correlated, we must account for their correlation

in the analysis. An AR(1) structure for the variance-covariance matrix V is utilized to model the errors within a

profile, as assumed by Amirhossein et al. (2010) for the linear mixed model (the parametric approach). The N P

approach utilizing the linear mixed p-spline regression model, as described in Section 3, with p = 1 and utilizing
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the radial basis. In addition, the semiparametric approach via the M MRP M method, as described in Section 4, is

applied to this data set.

The fitted profiles using the parametric, N P , and M MRP M approaches are illustrated in Figure 3 with the raw

data (displayed as in Figure 2) as well for the twenty-six engines. One can see that the parametric approach is able

to capture the main characteristics in the raw data set but does not capture several dips and wiggles that may be

important, suggesting that the quadratic model is misspecified. On the other hand, the N P and semiparametric

approaches capture most of the main features in the data set. Furthermore, the MSE values are 4.58, 0.44 and 0.43

for the parametric, N P and M MRP M fits, respectively. In addition, the semiparametric approach relies more on

the N P approach than the parametric model indicating that the parametric model is incorrectly specified. The

estimated mixing parameter (λ̂) value is approximately 0.98. Thus, 98% of the semiparametric fit comes from the

N P fit while only 2% comes from the parametric fit. Based on the MSE criteria, we can say that the N P and

semiparametric approaches are superior to the parametric approach for fitting this data set.

Figure 3: (a) The raw data set for 26 automobile engines with the PA curve (solid black) (b) Fitted profiles using

a second order polynomial mixed model (Parametric Approach) with the PA curve (solid black) (c) Fitted profiles

using linear mixed p-spline regression (N P Approach) with the PA curve (solid black) and (d) Fitted profiles using

MMRPM method (Semiparametric Approach) with the PA curve (solid black).

Since all approaches considered in this paper assume that the random errors are normally distributed, the first

step in the Phase I analysis is to assess the viability of this assumption. To examine if the normality is a reasonable

assumption for the parametric, N P and M MRP M methods, we show in Figure 4 a histogram of the residuals from
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each method as an exploratory measure. The residuals have been computed from each method for the 26 engines

using the AR(1) structure for the variance-covariance matrix. Traditional tests of normality, such as the Anderson-

Darling test, are not valid here since the residuals are correlated. Therefore, we use these histograms as graphical

aids to check the normality assumption.

Figure 4: (a) Histogram for the residuals from the fitted profiles using the parametric approach (b) Histogram for

the residuals from the fitted profiles using the N P approach and (c) Histogram for the residuals from the fitted

profiles using the semiparametric approach.

Figure 4, gives the histogram for the residuals from the parametric approach (sub-figure (a)). It can be seen

that, the residuals are centered around zero but there is some amount of left-skewness in the data. This result is

in agreement with the one from Amirhossein et al. (2010). The histogram for the residuals from the N P approach

(sub-figure (b)) looks very symmetric around zero and the range for the residual values from two to negative two.

The residuals from the semiparametric approach (sub-figure (c)) strongly resemble data from a normal distribu-

tion with mean zero. Hence, the residuals resulting from the N P and M MRP M methods appear to more strongly

support the normality assumption than those from the parametric method.

In the following section, we use a T 2 based control procedure to investigate the stability of the process as well

as determine if there are outlying profiles using the parametric, N P and semiparametric approaches.
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6.2 The T 2 Control Chart

In order to determine if a profile is an outlier or if the profile has shifted, we propose two methods for each

approach: one, by analyzing the vector of the fitted values and the second by utilizing the vector of the estimated

random effects from the parametric, N P and M MRP M approaches. In Phase I analysis, we are interested in

using the HDS to estimate the mean vector µb and variance-covariance matrix Σb of the b̂i vectors, after we have

removed the out-of-control profiles.

One method of identifying out-of-control profile is use of the Hotelling’s T 2 statistics. The simulation results of

Section 5 indicate that the T 2 statistics based on the fitted values and the estimated random effects are identical for

the parametric approach and nearly equal for the other two approaches. Hence, we only focus on the T 2 statistics

based on the estimated random effects from each one of our methods as given in Equations (6), (18), and (24).

The T 2 control chart consists of a plot of T 2
i statistics by i for all profiles in the HDS. If a T 2

i statistic exceeds the

UC L associated with the chart, then that estimated profile is identified as a possible outlier to be removed from the

HDS. As pointed out in the simulation section, use of the asymptotic distribution for determining the UC Ls for

the N P and semiparametric is a conservative approach, providing UC Ls that are slightly larger than they should

be resulting in probability of signals slightly smaller than the nominal value.

For this analysis, the asymptotic distribution of T 2
i using the parametric approach is χ2

d f for all i = 1,2, . . . ,m.

The UC L is calculated as UC LPar = χ2
(1−α,q) where χ2

(1−α,q) is the (1−α)th quantile from a χ2 distribution with

q degrees of freedom where α is adjusted as described in Section 5, and q replaced by the number of estimated

random effects. The UC L for the T 2
i statistics based on the N P estimated random effects is obtained as UC LN P =

χ2
(1−α,d fN P ) with d fN P replaced by the number of estimated random effects plus the number of knots. Thus d fN P =

p +K1 +K2. For this application p = 1,K1 = 2 and K2 = 2.

In addition, the estimated first-order autocorrelation, estimated from the M MRP M residuals, is 0.5 approxi-

mately. Thus, using our results from the simulation section, the UC L for the T 2
i statistics based on the M MRP M

estimated random effects is obtained as in Equation (31), as a convex combination from the parametric UC L and

the N P UC L via the estimated mixing parameter λ̂ as given in Equation (21).

UC LM MRP M = (1− λ̂)∗UC LPar + λ̂∗UC LN P (31)

For this analysis, we choose αover al l = 0.05 which corresponds to

α= 1− (1−αover al l )
1
m = 1− (1−0.05)

1
26 = 0.0019709 (32)

The upper control limits are calculated as UC LPar = 12.459, UC LN P = 18.942 and UC LM MRP M = 18.755.

The T 2 chart for the m = 26 profiles is used to identify profiles with abnormal estimated random effects values.

The T 2
i values for the parametric, N P and M MRP M as given in Equations (6), (18), and (24) are computed and the

corresponding control charts are given in Figure 5.

From Figure 5, we see that the use of the T 2 charts based on the parametric approach (sub-figure (a)) does not

produce a signal. This result is in agreement with that of Amirhossein et al. (2010). In addition, the N P approach

24



Figure 5: (a) T 2 control chart based on the estimated random effects parametrically. (b) T 2 control chart based

on the estimated random effects nonparametrically (c) T 2 control chart based on the estimated random effects

semiparametrically.

(sub-figure (b)) and M MRP M approach (sub-figure (c)) also do not produce a signal. It is interesting to note

that the parametric, N P and semiparametric methods agree on this decision even thought the N P and M MRP M

methods give much better fits for the engine profiles in term of smaller mean square errors.

Our MSE results along with the plots shown in Figure 3 indicate that the mixed quadratic parametric model

is not able to capture the main features in this data set. Also, the parametric model produced the largest MSE

in comparison with the N P and M MRP M methods. Our simulation results indicate that using the T 2 approach

with a misspecified parametric model is not as powerful at detecting step-shifts in profiles away for the normative

profiles as the N P or M MRP M method. For these reasons the user should strongly consider using either the N P

or M MRP M results for this data. Despite the fact that all three methods reach the same conclusion regarding the

“in-control” status of each profile, the N P and M MRP M results provide a better description of the actual behavior

of each engine profile. Thus, the N P and M MRP M methods give the user greater ability to properly interpret the

true relationship between engine speed and torque for this type of engine and an increased likelihood of detecting

unusual engines in future production. As a result of this analysis, we conclude that all 26 engines can be used to

obtain the parameters estimates on which the Phase I I control charts will be based. Our conclusion agrees with

that expressed in Amirhossein et al. (2010) where they found no unusual profiles using the quadratic model.
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7 SUMMARY

In this paper, we have developed statistical procedures to monitor a product or process whose quality is measured

across a continuum where a plot of the resulting response forms a profile. This research studied the mixed effects

models by introducing two new techniques for profile monitoring in Phase I analysis. The first proposed tech-

nique was the N P approach via a mixed p-spline regression. The N P approach provides flexible fits to PA and C S

profiles. The second proposed technique is a semiparametric procedure via the M MRP M method in which we

combine both parametric and N P profile fits via a mixing parameter to gain advantages from both. For each case,

we formulated two Hotelling’s T 2 statistics, one based on the estimated random effects and one based on the fitted

values, and describe how the corresponding UC L values are obtained.

A Monte Carlo study and a real dataset were performed to compare the SI MSE and the simulated probability of

signal of the parametric, N P , and semiparametric approaches. Both correlated and uncorrelated errors structure

scenarios were evaluated for varying amounts of model misspecification, number of profiles, number of obser-

vations per profile, shift location, and in- and out-of-control situations. The M MRP M method for uncorrelated

and correlated scenarios was competitive and, often, clearly superior with the parametric and N P over all levels

of misspecification. Therefore, this research supports the claim that the N P and M MRP M methods are robust to

model misspecification.

We also found that both the N P and the semiparametric methods result in charts with good abilities to detect

changes in Phase I data, and in charts with easily calculated though conservative control limits. The proposed

methods provide greater flexibility and efficiency than current parametric methods used in profile monitoring

that rely on correct model specification.
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