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A TEST FOR AN ABRUPT CHANGE IN WEIBULL HAZARD FUNCTIONS

WITH STAGGERED ENTRY AND TYPE I CENSORING
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Abstract: We consider a test of an unknown change-point in a Weibull hazard func-

tion. We assume that data are subject to staggered entry and type I censoring. We

formulate the profile log-likelihood ratio test statistic as a function of the change-

point and derive the limiting Gaussian process. From the supremum of the limiting

process, we determine critical values and study the power of the test through sim-

ulation. We demonstrate this method using real data from a clinical study for the

treatment of chronic granulomatous disease.
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1. Introduction: An abrupt change in a hazard function often symbolizes

the crossing of a threshold. One example occurs in clinical studies when a lag

exists between the time when a treatment is administered and the time when

symptoms have improved. Similarly, rates of mortality or cancer recurrence

might change abruptly after a delay following the treatment. It may be useful

to test for the existence of such changes before attempting to estimate them.

Matthews and Farrell (1982,1985) considered the case of a constant hazard rate

with an abrupt change at an unknown time. They developed a likelihood ratio

test for such a change-point and simulated critical values. Matthews, Farrell and

Pyke (1985) demonstrated the weak convergence of a score test to a Brownian

Bridge and derived asymptotic critical values for the test. Worsley (1988) noted

that the likelihood ratio test was sensitive to the width of the data intervals. For

example, if the unknown change-point of interest is allowed to be at the largest or

smallest observation then the likelihood ratio test becomes unbounded. Davies

(1977) considered hypothesis testing in more general terms in which nuisance

parameters exist only under the alternative. Davies concluded that the standard

likelihood ratio test asymptotics are not applicable, but inference from a Gaussian



2 MATTHEW WILLIAMS AND DONG-YUN KIM

process may be possible. Loader (1991) also considered a constant hazard rate

with abrupt change and used large deviation approximations to the significance

level of the likelihood ratio test. Loader demonstrates the method on heart

transplant data.

Recent works have expanded the scope of change-points within the constant

hazard rate framework. Lu, Turnbull and Clark (1997) developed a likelihood ra-

tio test including binary covariates, testing the null hypothesis of a change-point

at ν = ν0 vs. the alternative ν 6= ν0. Dupuy (2009) allowed for the regres-

sion coefficients of the covariates to change as well, and obtained non-asymptotic

bounds for the significance level and type II error for data with random right

censoring. Goodman, Li and Tiwari (2006) test for multiple change-points in

piecewise linear hazard functions using asymptotic Wald tests. Qin and Sun

(1997) examine right-censored data with the hazard function completely speci-

fied before the change, but completely unknown after it. They propose a modified

maximal censored likelihood ratio test and bootstrap to get critical values.

Kim, Woodroofe and Wu (2004) developed a likelihood ratio test for a change

in hazard rates under staggered entry and type I censoring. Their test statis-

tic converges weakly to a stationary Guassian process, whose tail probabilities

can be approximated. We demonstrate that similar techniques can be employed

to derive a test for data that has a Weibull distribution with known shape pa-

rameter under the null hypothesis. A known shape parameter corresponds to a

known polynomial shape for the hazard function and allows for closed forms for

maximum likelihood estimates of the scale parameter.

We consider a general form for the hazard function with unknown change

point ν:

h(t) =

{

θ1t
k−1, t < ν

θ2t
k−1, t ≥ ν

}

(1.1)

where t ≥ 0 is the failure time, k > 0 is the known shape parameter, and θ1 > 0

and θ2 > 0 are the scale parameters. The corresponding density is

f(t) =

{

θ1t
k−1 × exp(− θ1

k t
k), t < ν

θ2t
k−1 × exp(− θ1

k ν
k − θ2

k (t
k − νk)), t ≥ ν

}

(1.2)

Note that k = 1 is the exponential case.
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We consider the case of staggered entry and type I censoring. Subjects

enter the study randomly, following a Poisson process. The ending time of the

study T is independent of the number of subjects or events. Conditioning on

the total number of subjects, N(T ) = n, who entered the study before time

T , the censoring time of each subject is a sample from a uniform distribution,

(T − τi) ∼ U(0, T ), where τi is the time the ith subject entered the study. For

simplicity we assume τ1 < . . . < τn.

2. Main Result: Under the null hypothesis, there is no change, θ1 6= θ2. This

formulation cancels out the change point, ν, in the density (1.2), simplifying to

a parameterization of a Weibull distribution with k > 0 known. Under the null

hypothesis, the failure time of a subject, Y , has a density:

f(y) = θyk−1 × exp(−θyk/k), y > 0.

Under the alternative hypothesis, θ1 6= θ2, we use (1.2).

If we allow for staggered entry at time τ > 0 and right censoring at time T ,

our observed data is X = min(Y, T − τ) and δ = 1{Y < T−τ}. Then for N(T ) = n

independent subjects, the log-likelihood becomes

lnLN (θ1, θ2, ν) = K1(ν) ln(θ1)+K2(ν) ln(θ2)−T1(ν)θ1−T2(ν)θ2+
n
∑

i=1

δi(k−1) ln xi,

where
K1(ν)=

∑n
i=1 1{xi<ν,δi=1}

K2(ν)=
∑n

i=1 1{xi≥ν,δi=1}
T1(ν)=

1
k

∑n
i=1(x

k ∧ νk)

T2(ν)=
1
k

∑n
i=1(x

k − νk)+,

with (x ∧ ν) = min(x, ν) and (x− ν)+ = max(0, (x− ν)).

Under the null hypothesis, the maximum likelihood estimate (MLE) for θ

is θ̂ = (K1 + K2)/(T1 + T2). Note that θ̂ is not a function of ν. Under the

alternative hypothesis, the conditional MLE’s are θ̂1(ν) = K1(ν)/T1(ν) and

θ̂2(ν) = K2(ν)/T2(ν), which depend on ν. The log-likelihood ratio test statistic

is the process
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ΛN (ν) = K1(ν) ln

(

K1(ν)

T1(ν)
× T1 + T2

K1 +K2

)

+K2(ν) ln

(

K2(ν)

T2(ν)
× T1 + T2

K1 +K2

)

. (2.1)

We restrict 0 < a ≤ ν ≤ b < T for arbitrary a and b to ensure that ΛN (ν) is

bounded for each ν. We are interested in finding asymptotic critival values for

the test statistic

2ΛN (ν̂) = sup
a≤ν≤b

2ΛN (ν), where ν̂ is the MLE of ν.

We start with the second-order Taylor-Series expansion:

2ΛN (ν) =

(

T1(ν)

K1(ν)
− T2(ν)

K2(ν)

)2(K1(ν)K2(ν)

K1 +K2

)(

K1 +K2

T1 + T2

)2

+Rn(ν).

Proposition 1. For any 0 < a < b < 1,

sup
a≤ν≤b

|Rn(ν)| →p 0

as n → ∞, when H0 is true.

Proof. See the proof of Proposition 1 in Kim, Woodroofe and Wu (2004).

We define ZN (ν) as the following:

ZN (ν) =

(

T1(ν)

K1(ν)
− T2(ν)

K2(ν)

)(

K1(ν)K2(ν)

K1 +K2

)1/2 (K1 +K2

T1 + T2

)

.

The square of the ZN (ν) process will provide an approximation to the 2ΛN (ν)

process.

Theorem 2. Under H0, ZN (ν) converges weakly to the zero-mean, unit-variance,

Gaussian process Z(ν), where

ρ12 = Cov(Z(ν1), Z(ν2)) =

(

P (x < ν1, δ = 1)

P (x < ν2, δ = 1)
× P (x ≥ ν2, δ = 1)

P (x ≥ ν1, δ = 1)

)1/2

.

and
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P (x < ν, δ = 1)= 1− e−
θ

k
νk − θ

kT

∫ νk

0 z1/ke−
θ

k
zdz

P (x ≥ ν, δ = 1)= e−
θ

k
νk − e−

θ

k
T k − θ

kT

∫ T k

νk z1/ke−
θ

k
zdz

P (δ = 1)= 1− e−
θ

k
T k − θ

kT

∫ T k

0 z1/ke−
θ

k
zdz.

Proof. See Appendix.

We can see that Z(ν) is non-stationary, but we can transform Z(ν) into an

Ornstein-Uhlenbeck process W (t), which is stationary.

Corollary 3. For Z(ν) defined above, g1(ν) = P (x < ν, δ = 1), and g2(ν) =

P (x ≥ ν, δ = 1)

W (t) = Z

(

g−1
2

(

g2(0)e
t

1 + et

))

, t ∈ (−∞,∞)

is an Ornstein-Uhlenbeck process.

Proof. Both g1 and g2 are positive, g1 is increasing, and g2 is decreasing on ν ∈
[0, T ]. Furthermore, g1(ν) = g2(0)−g2(ν). We can use the following relationship,

g2(ν) = g2(0)
et

1 + et
, t ∈ (−∞,∞).

Then for ν1 < ν2 ⇔ t1 > t2,

ρ12=
√

P (x<ν1,δ=1)
P (x<ν2,δ=1) ×

P (x≥ν2,δ=1)
P (x≥ν1,δ=1)

=
√

et2
et1

= e−
1

2
|t1−t2|.

An approximation of the tail probability for the supremum of an Ornstein-

Uhlenbeck process can be derived:

Corollary 4.

P [ sup
a≤ν≤b

Z(ν)2 > c2] = P [ sup
a≤ν≤b

|Z(ν)| > c]

= P [ sup
a∗≤t≤b∗

|W (t)| > c]

≈ (b∗ − a∗) c√
2π
e−c2/2,
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where a∗ = log[g2(b)/(g2(0) − g2(b))], b
∗ = log[g2(a)/(g2(0) − g2(a))], and c > 0

is large.

Proof. See Theorem 12.2.9 and Remark 12.2.10 in Leadbetter, Lindgren and

Rootzén (1983).

3. Other forms of type I censoring: If we consider the same underlying

hazard function (1.1), but assume a different form of type I censoring, we might

still be able to establish convergence similar to that of Theorem 2. In the proof

of weak convergence (See Appendix), the step that directly relies on censoring

probabilities uses the equality

1

k
E(xk ∧ νk) =

1

θ
P (X ≤ ν, δ = 1). (3.1)

This should establish weak convergence, but might not lead to the same covari-

ance structure as in Theorem 2.

One example occurs when all subjects enter at time τ = 0 and the study

ends at time T . This situation satisfies (3.1) and has an identifiable covariance

structure. In this case, the covariance is of the same form as in Theorem 2, and

the correlation ρ12 now contains the following probabilities:

P (x < ν, δ = 1)= 1− e−
θ

k
νk

P (x ≥ ν, δ = 1)= e−
θ

k
νk − e−

θ

k
T k

P (δ = 1)= 1− e−
θ

k
T k

.

If we let T → ∞, we also get a result for the case of no censoring.

4. Simulation Study: We turn to the Rayleigh case, with k = 2. The hazard

function is linear and at an unknown time, ν > 0, the slope of the hazard function

changes:

h(t) =

{

θ1t, t < ν

θ2t, t ≥ ν

}

, θ1 > 0, θ2 > 0, t ≥ 0. (4.1)

In order to get critical values for 2ΛN (ν̂), we could simulate {xi, δi} under

the null hypothesis θ1 = θ2 = θ0 and search 2ΛN (ν) over a fine grid of ν ∈ (a, b) ⊂
(0, T ) to find the maximum value. We would repeat this many times and record

the sample quantiles. Alternatively, we could calculate critical values much more
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Table 4.1: Critical Values for sup
a≤ν≤b

Z(ν)2

Parameters Simulated O-U approx. Censoring
θ T a b 95% 99% 95% 99% P(δ = 0)

0.25 1 0.2 0.8 9.21 12.69 9.32 12.86 96%
0.3 0.7 8.20 11.64 8.16 11.74
0.4 0.6 7.09 10.49 6.43 10.10

1 1 0.2 0.8 9.30 12.78 9.36 12.90 85.6%
0.3 0.7 8.29 11.90 8.20 11.79
0.4 0.6 7.04 10.48 6.47 10.14

4 1 0.2 0.8 9.44 12.97 9.56 13.10 59.8%
0.3 0.7 8.42 11.83 8.43 12.00
0.4 0.6 7.23 10.62 6.71 10.36

rapidly by using Z(ν) instead of 2ΛN (ν). Computationally, the probabilities in

ρ12 are straight-forward to calculate with software by converting the integrals

into cumulative distribution functions for gamma random variables. Another

alternative is to use the approximation from Corollary 4. This last method is

almost instantaneous. In the following simulations, we compare the properties

of critical values generated by our two approximations in terms of type I error

rates and power.

4.1 Critical Values: Under the null hypothesis, we simulate 50000 realizations

of Z(ν) for different combinations of parameters, with the grid of ν over 10−4

increments (Table 4.1). Most of our data are censored. We use a simple non-linear

solver to find the approximate critical values using Corollary 4. The two sets of

critical values seem to match up well for the [0.2, 0.8] and [0.3, 0.7] intervals. The

values from the approximation of the Ornstein-Uhlenbeck supremum seem too

low for the [0.4, 0.6] intervals.

4.2 Critical Values for θ0 unknown: The g2 function from Corollary 4 is a

function of θ0, the slope under the null hypothesis. However, the critical values

are well-behaved for the ranges of θ0 considered here. Numerically, the critical

values appear to be monotonic with respect to θ0. We can demonstrate this by

showing that correlations between Z(νi) and Z(νj) are decreasing with increasing

θ (Figure 4.1) or by showing that (b∗−a∗) is increasing with respect to θ (Figure

4.2). The first case implies that supa≤ν≤b Z(ν)2 increases with θ, because a

realization of the process becomes closer to a draw of independent Z(νi). The
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second case implies that our approximation from Corrollary 4 increases with θ.
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Figure 4.1: Cov(Z(νi), Z(νj)) decreases as θ increases

This suggests that it’s possible to be conservative by choosing θ0 larger than

some estimate θ̂0. Alternatively, we propose estimating θ0 by using the observed

proportion of censored observations as an estimate of P (δ = 0) and solving for

θ0. For the range of θ considered, this leads to accurate estimates of both θ0

and the corresponding critical values (Table 4.2). Furthermore, larger variability

in θ̂0 corresponds to smaller variability in estimates of the critical values. The

larger variation for θ0 = 4 suggests that this approach is reasonable as long as

the censoring proportion is moderate to large.

4.3 Empirical Error Probabilities: Under the null hypothesis, we simu-

late data from a Rayleigh distribution for θ ∈ {0.25, 1, 4}, T = 1, (a, b) ∈
{(0.2, 0.8), (0.3, 0.7), (0.4, 0.6)}, with the grid of ν over 10−4 increments. To simu-

late the Poisson process of entry into the study, we generate N ∼ Poisson(γ) with

γ ∈ (50, 100, 200, 500, 1000). We then sample Yi ∼ Rayleigh(θ) for i ∈ (1, . . . , N).

Finally we sample the censoring times (T − τi) ∼ U(0, T ). We then calculate Xi

and δi and form the log-likelihood ratio test statistic 2ΛN (ν̂). We track the rate

of exceeding the simulated critical values and the Ornstein-Uhlenbeck critical
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Figure 4.2: (b∗ − a∗) increases as θ increases

values (for both θ0 known and unknown) and compare these rates to the nominal

type I error rates. From Table 4.3, the simulated critical values seem to attain

the nominal type I error rates of 5% around γ = 100 for θ = 4, γ = 500 for θ = 1,

and γ = 1000 (or perhaps even 2000) for θ = 0.25. The Ornstein-Uhlenbeck

critical values give results that are very similar. The exception is the [0.4, 0.6]

case, for which the type I error rates are too large. Results for 1% rates are

similar and thus not included.

4.4 Power: Under the alternative hypothesis, we simulate data using θ1 =

0.25, 1, 4 and θ2/θ1 = (1/3, 1/2.8, . . . , 2.8, 3.0) with γ = 500. We then track

the rate of exceeding the simulated critical values. We first consider a change

at ν = 0.5. From Figure 4.3 we see that the censoring rate affects power. For

θ1 = 4 the power is higher than for θ1 = 1 which is higher than that for θ1 = 0.25.

The censoring rate is the lowest for θ1 = 4, so we would expect to see many

more uncensored observations than for the other two settings. Figure 4.4 shows

that all three methods for obtaining critical values (i.e. the simulated values

and the Ornstein-Uhlenbeck approximation with and without θ0 known) lead to

essentially the same power for moderate to wide intervals.

Within values of θ1 (Figure 4.5), the narrowest interval [0.4, 0.6] provides

the highest power, while the widest interval [0.2, 0.8] has the lowest power for a

change at 0.5. For a change outside of [0.4, 0.6], this is no longer true. Figure 4.6

shows that the interval [0.3, 0.7] has the best power for ν = 0.65, and [0.4, 0.6]



10 MATTHEW WILLIAMS AND DONG-YUN KIM

Table 4.2: Critical Values (5%) for the O-U approx. with θ0 unknown
Simulations Estimating θ0 (1000 each)

True Values Mean SD Q5 Q50 Q95

θ0 0.250 0.249 0.057 0.163 0.244 0.347
O-U [0.4,0.6] 6.425 6.425 0.004 6.420 6.425 6.431
O-U [0.3,0.7] 8.159 8.159 0.003 8.154 8.159 8.165
O-U [0.2,0.8] 9.318 9.318 0.003 9.313 9.317 9.323

θ0 1.000 0.998 0.126 0.795 0.995 1.208
O-U [0.4,0.6] 6.474 6.474 0.009 6.460 6.473 6.488
O-U [0.3,0.7] 8.205 8.205 0.008 8.192 8.205 8.218
O-U [0.2,0.8] 9.360 9.360 0.007 9.348 9.360 9.372

θ0 4.000 4.027 0.372 3.459 3.992 4.674
O-U [0.4,0.6] 6.709 6.712 0.032 6.663 6.709 6.768
O-U [0.3,0.7] 8.425 8.428 0.030 8.382 8.425 8.481
O-U [0.2,0.8] 9.563 9.565 0.028 9.523 9.562 9.614

Table 4.3: Empirical Type I errors using 5% Simulated Critical Values
Parameters Expected Sample Size (se ≈ 0.0020)

θ T a b 50 100 200 500 1000
0.25 1 0.2 0.8 0.0010 0.0055 0.0159 0.0333 0.0426

0.3 0.7 0.0009 0.0046 0.0188 0.0410 0.0481
0.4 0.6 0.0001 0.0025 0.0228 0.0486 0.0460

1 1 0.2 0.8 0.0164 0.0246 0.0354 0.0472 0.0503
0.3 0.7 0.0155 0.0372 0.0484 0.0477 0.0475
0.4 0.6 0.0173 0.0470 0.0500 0.0486 0.0492

4 1 0.2 0.8 0.0628 0.0445 0.0482 0.0485 0.0468
0.3 0.7 0.0512 0.0483 0.0490 0.0501 0.0506
0.4 0.6 0.0449 0.0487 0.0493 0.0463 0.0514
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has the worst. Results are similar for ν = 0.35 (Figure not shown). This suggests

that while the narrowest interval should have the best power, a poor choice of

interval will cause a narrow interval to be less powerful than a wider one. Results

for α = 0.01 are similar (Figure not included).

From Figure 4.3, it is clear that these power curves are not symmetric. The

test has greater power detecting a change when log(θ2/θ1) is positive. Kim,

Woodroofe, and Wu (2004) use Hellinger distance to justify this for the ex-

ponential case. We explain using censoring rates. For a given θ1 under the

alternative hypothesis, the hazard function, h(t) has the following property:

h(t; (θ2/θ1) > 1) ≥ h(t; (θ2/θ1) ≤ 1) for all t. Then the cumulative distribu-

tion function also has this property: F (t; (θ2/θ1) > 1) ≥ F (t; (θ2/θ1) ≤ 1) for

all t. Therefore we expect to see more uncensored events when log(θ2/θ1) > 0,

assuming the same censoring conditions. As demonstrated above, power is in-

fluenced by the number of uncensored observations. When log(θ2/θ1) > 0, we

expect to have more uncensored observations than when log(θ2/θ1) ≤ 0. So when

| log(θ2/θ1)| = r > 0, we should have greater power for the right tail than for the

left.
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Figure 4.3: Empirical power at the 5% level for γ = 500 and [a, b] = [0.3, 0.7]
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Figure 4.4: Empirical Power for θ1 = 1, γ = 500, and ν = 0.5. Comparing Simulated
and Ornstein-Uhlenbeck (O-U) 5% critical values from Tables 4.1 and 4.2. Left to right
[0.3, .07] and [0.4, 0.6]

5. Clinical Study Example: We now apply our testing procedure to the results

of a placebo controlled trial of gamma interferon in the treatment of chronic

granulomatous disease (Fleming and Garrington, 1991). This is a hereditary

disease of the immune system that can lead to serious infections. The example

data are the times to first infection since the start of treatment. These times

appear to follow a Rayleigh distribution subject to staggered entry and right

censoring. Times have been rescaled by dividing by the length of the study (T =

321 days) to have scaling consistent with our simulations (T = 1). Weibull plots

of the placebo and treatment groups support that k = 2 is reasonable (Figure

5.7). We can see this by noting that for later events the treatment and placebo

groups have curves that are roughly parallel with slope of about 2. The maximum

likelihood estimate of k for the treatment group is 1.80. If we split the placebo

group into two groups (before and after 0.10), we get estimates of 2.19 and 1.96

for the shape parameter. Together this all supports the assumption that k = 2 is

reasonable. The early failures for the placebo group suggest a potential shift in

the scale parameter for the placebo group but no shift for the treatment group.

We now test the placebo data to see if the alternative (4.1) is reasonable.

There are 53 patients in the placebo group and 20 observed events for a censoring

proportion of around 60%. From Figure 5.7, it appears that a change might

occur early on, so we choose a wide interval ν ∈ [0.05, 0.95]. We calculate critical
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Figure 4.5: Empirical power at the 5% level with θ1 = 1, γ = 500, and ν = 0.5

values using the method described in Section 4.2. The plug-in estimate θ̂0 is 3.60,

and the asymptotic 5% and 1% critical values are 11.30 and 14.79 respectively.

The likelihood ratio test statistic is 37.79 (maximized over a 10−4 grid of ν).

We therefore reject the null hypothesis θ1 = θ2 = θ0 in favor of the alternative

θ1 6= θ2. The corresponding point of maximization is ν̂ = 0.0717, which translates

to 23.02 days on our original scale. The conditional MLE’s are θ̂1(ν̂) = 64.69

and θ̂2(ν̂) = 1.78. We can also test for a change in the treatment group. There

are 55 patients receiving the treatment and only 7 uncensored observations. The

likelihood ratio test statistic is 1.63. The test statistic is so small that we would

not expect to reject the null hypothesis. These results suggest that the treatment

may remove the early failure structure that is present under placebo conditions.

6. Conclusions: We have established a generalization of the procedure for

testing abrupt changes under staggered-entry established by Kim, Woodroofe

and Wu (2004) by extension to hazard functions of the Weibull form. We have

also evaluated one method of implementing this test by estimating θ0 to calculate

critical values, and demonstrated its effectiveness through both simulation and a
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Figure 4.6: Empirical Power at the 5% level for θ1 = 1, γ = 500, and ν = 0.65

clinical study example. The convergence rate of the test is related to the number

of uncensored observations, suggesting that around 50 uncensored observations

provides adequate convergence. Furthermore, power appears to increase as the

proportion of uncensored observations increases. Extensions of this work might

include the use of covariates and exploring other forms of censoring.
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7. Appendix: We prove weak convergence and find the covariance for the

Gaussian process Z(ν) in a manner similar to Kim, Woodroofe and Wu (2004).

Proof of Weak Convergence. We show that ZN (ν) converges weakly to a Gaus-

sian process by expressing it in terms of empirical and sub-empirical processes,

FN(x) and F̃N (x), defined by
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Figure 5.7: Time to first infection vs Proportion of events. Placebo (circle), treatment
(triangle), and censored (outline).

FN (x)=
√
N [FN (x)− F (x)]

F̃N (x)=
√
N [F̃N (x)− F̃ (x)]

where FN (x) and F̃N (x) are the empirical and subempirical cumulative distribu-

tion functions
FN (x)= 1

N

∑N
i=1 1{Xi≤x}

F̃N (x)= 1
N

∑N
i=1 1{Xi≤x}δi

and F (x) and F̃ (x) are their asymptotic distributions under the null hypothesis

F (x)= P (Xi ≤ x) = 1− 1
T (T − x)e−(θxk/k)

F̃ (x)= P (Xi ≤ x, δi = 1) = 1− e−(θxk/k) − θ
kT

∫ xk

0 z1/ke−(θz/k)dz.

We note that (expressing Tj(ν) as Tj and Kj(ν) as Kj for ease of notation)

T1

K1
− T2

K2
=

1

K1K2

[

K2

(

T1 −
K1

θ

)

−K1

(

T2 −
K2

θ

)]

.
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We note further that K1/N = F̃N (ν) and K2/N = F̃N (T )− F̃N (ν).

Next we express T1/N in terms of the empirical distribution function.

T1

N = 1
kN

∑N
i=1

(

∫ νk

0 1{xk

i
>tk}d(t

k)
)

= 1
k

∫ νk

0 [1− FN (t)] d(tk).

Similarly, T2/N = k−1
∫ T k

νk [1− FN (t)] d(tk) and k−1E(xk∧νk) = k−1
∫ νk

0 [1− F (t)] d(tk).

Through integration, we see that k−1E(xk ∧ νk) = θ−1P (X ≤ ν, δ = 1) =

θ−1F̃ (ν).

We can express T1 −K1θ
−1 and T2 − K2θ

−1 in terms of the empirical and

subempirical processes:

T1 − K1

θ = −
√
N
k

∫ νk

0 FN(x)d(xk)−
√
N
θ F̃N(ν)

= −
√
N

∫ ν
0 xk−1

FN (x)d(x) −
√
N
θ F̃N (ν),

T2 − K2

θ = −
√
N
k

∫ T k

νk FN (x)d(xk)−
√
N
θ

[

F̃N (T )− F̃N (ν)
]

= −
√
N

∫ T
ν xk−1

FN (x)d(x) −
√
N
θ

[

F̃N (T )− F̃N (ν)
]

.

Furthermore, ZN (ν) can be expressed as

ZN (ν)= CN

(

K2

N , K1

N

)

1√
N

(

T1 − K1

θ , T2 − K2

θ

)t

= CN

(

K2

N , K1

N

)

φ
(

FN , F̃N

)

,
(7.1)

where

CN =

(

K1 +K2

K1K2

)1/2 N3/2

T1 + T2
,

and φ : D[0, T ]×D[0, T ] → D[0, T ]×D[0, T ] such that

φ(g, h)(ν)=
(

−
∫ ν
0 xk−1g(x)dx− 1

θh(ν),−
∫ T
ν xk−1g(x)dx − 1

θ [h(T )− h(ν)]
)t

We observe that φ is continuous at every (g, h) for g and h in D[0, T ]. Then

all sequences gN (x) and hN (x) that converge to g(x) and h(x) respectively, con-

verge uniformly on x ∈ [0, T ]. It follows that φ(gN , hN )(ν) must also converge

uniformly to φ(g, h)(ν) for x ∈ [0, T ].

We establish weak convergence by using Theorem 3 from Breslow and Crow-
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ley (1974), in which {FN , F̃N} converge weakly to a bivariate process {G, G̃}.
Kim, Woodroofe, and Wu (2004) note that G has the same distribution as B(F )

and G̃ has the same distribution as B̃(F ), where B is a Brownian Bridge. This

result, along with the continuity of φ implies that ZN (ν) converges weakly to

Z(ν), where

Z(ν) = C(ν)[F̃ (T )− F̃ (ν),−F̃ (ν)]φ[B(F ),B(F̃ )](ν), (7.2)

with

C(ν) =
k

E(Xk)





F̃ (T )

F̃ (ν)
(

F̃ (T )− F̃ (ν)
)





1/2

.

Derivation of Covariance. To find Cov(Z(ν1), Z(ν2)), we first let T1 −K1θ
−1 =

∑N
i=1X

′

i(ν) and T2 −K2θ
−1 =

∑N
i=1X

′′

i (ν), with

X
′

i(ν)=
1
k (x

k
i ∧ νk)− 1

θ1{xi<ν,δi=1},

X
′′

i (ν)=
1
k (x

k
i − νk)+ − 1

θ1{xi≥ν,δi=1}.

By the central limit theorem, for a given ν,
√
N(

∑

X
′

i(ν),
∑

X
′′

i (ν)) converges

in distribution to the bivariate normal random variable (Z1(ν), Z2(ν)) with mean

vector E(X
′

,X
′′

) and covariance Cov(X
′

,X
′′

). We can show E(X
′

(ν)) = E(X
′′

(ν)) =

0, and Cov(X
′

(ν),X
′′

(ν)) = 0.

Integration by parts and the transformation z = xk yield, for ν1 ≤ ν2,

Cov(X
′

(ν1),X
′

(ν2))= V ar(X
′

(ν1)) =
1
θ2
P (x < ν1, δ = 1) = σ2

1

Cov(X
′′

(ν1),X
′′

(ν2))= V ar(X
′′

(ν2)) =
1
θ2P (x ≥ ν2, δ = 1) = σ2

4

Cov(X
′

(ν1),X
′′

(ν2))= 0

Cov(X
′

(ν2),X
′′

(ν1))=
1
θ2 [P (x < ν2, δ = 1)− P (x < ν1, δ = 1)]

= (σ2
2 − σ2

4) = (σ2
3 − σ2

1).
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Let Σ = Cov(X
′

(ν1),X
′′

(ν1),X
′

(ν2),X
′′

(ν2)) . Then

Σ=













σ2
1 0 σ2

1 0

0 σ2
2 (σ2

2 − σ2
4) σ2

4

σ2
1 (σ2

3 − σ2
1) σ2

3 0

0 σ2
4 0 σ2

4













.

We note that the covariance structure is based on the probability that an uncen-

sored observation occurs before or after ν, scaled by θ−2.

Now we can write

[

ZN (ν1)

ZN (ν2)

]

= AN















1√
N

∑N
i=1X

′

i(ν1)

1√
N

∑N
i=1 X

′′

i (ν1)

1√
N

∑N
i=1X

′

i(ν2)

1√
N

∑N
i=1 X

′′

i (ν2)















→d A













Z1(ν1)

Z2(ν1)

Z1(ν2)

Z2(ν2)













=

[

Z(ν1)

Z(ν2)

]

,

where

AN =

[

a1N (ν1) a2N (ν1) 0 0

0 0 a1N (ν2) a2N (ν2)

]

,

A =

[

a1(ν1) a2(ν1) 0 0

0 0 a1(ν2) a2(ν2)

]

,

(a1N (ν), a2N (ν)) = CN (ν)(K2N
−1,K1N

−1), and (a1(ν), a2(ν)) = C(ν)[F̃ (T ) −
F̃ (ν),−F̃ (ν)] from (7.1) and (7.2).

Then Cov(Z(ν1), Z(ν2)) = AΣAt =

[

1 ρ12

ρ21 1

]

.
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