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The genetic algorithm (GA), a very powerful tool used in optimization, has been

applied in various fields including statistics. However, the general GA is usually com-

putationally intensive, often having to perform a large number of evaluations of an

objective function. This paper presents four different versions of computationally effi-

cient genetic algorithms by incorporating several different local directional searches into

the GA process. These local searches are based on using the method of steepest descent

(SD), the Newton-Raphson method (NR), a derivative-free directional search method

(denoted by “DFDS”), and a method that combines SD with DFDS. Some benchmark

functions, such as a low-dimensional function versus a high-dimensional function, and

a relatively bumpy function versus a very bumpy function, are employed to illustrate

the improvement of these proposed methods through a Monte Carlo simulation study

using a split-plot design. A real problem related to the multi-response optimization

problem is also used to illustrate the improvement of these proposed methods over

the traditional GA and over the method implemented in the Design-Expert statistical

software package. Our results show that the GA can be improved both in accuracy and

in computational efficiency in most cases by incorporating a local directional search

into the GA process.
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Introduction

A genetic algorithm (GA) is a stochastic optimization tool whose search technique

is based on the principals of Darwinian survival of the fittest in biological genetics.

The GA, originally developed by Holland (1975), simulates an evolutionary process of

a living species, using typical biological genetics operations such as “selection”, “mu-

tation” and “crossover”. GAs have been applied to a broad variety of fields, including

ecology, psychology, biochemistry, biology, computational mathematics, and statistics

(e.g., Haupt and Haupt, 2004; Heredia-Langner et al., 2003).

The reason that a GA is so popular and useful is that a GA has some attractive

features and advantages (Holland, 1992; Haupt and Haupt, 2004), such as employing

multiple concurrent search points (not a single point), not requiring the derivative of

an objective function, and being able to find a global or near-global optimum of an ob-

jective function with a very complex surface and/or in very high-dimensional domains

of the function. A disadvantage of the GA, however, is that it is computationally

intensive (Haupt and Haupt, 2004). Typically a GA, in order to find the optimum,

must evaluate an objective function a large number of times. For example, if taking

12 hours for only a single evaluation of a complex objective function (which is not

unusual in applications), then it could be imagined that the GA would become very

time-consuming.

To deal with the computational problem, this paper proposes and evaluates four

versions of a more computationally efficient GA based on modifying a traditional GA.

The main idea of each version of the modified GAs (MGAs) is to gather numerical

information from the GA itself so that a local directional search may be used to make

computational improvements to the traditional GA. Four local directional searches

used in our MGAs include the method of steepest descent (SD), the Newton-Raphson
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method (NR), a derivative-free directional search method (DFDS), and a method that

combines SD with DFDS.

The remainder of this paper is organized as follows. We first briefly review a tradi-

tional GA and its operations. The four local directional search methods are discussed

next. We then propose our four MGAs. We present some results for several objective

functions giving paired comparisons of the GA and the MGAs across a variety of level

combinations of the GA operations and two different stopping rules. A real case study

where the GA is compared to the MGAs is also illustrated. Finally, we give a summary

and conclusions, and suggestions for future work.

The Genetic Algorithm

Genetic algorithms are iterative optimization procedures that repeatedly apply GA

operations (such as selection, crossover and mutation) to a group of solutions until

some criterion of convergence has been satisfied. In a GA, a search point, a setting in

the search space, is coded into a string which is analogous to a chromosome in biolog-

ical systems. The string/chromosome is composed of characters which are analogous

to genes. In a statistical application, the chromosome corresponds to a particular set-

ting of k factors (or regressors), denoted by x = [x1, x2, ..., xk]
′ in the design space

and ith gene in the chromosome corresponds to xi, the value of the ith regressor. A

set of multiple concurrent search points or a set of chromosomes (or individuals) is

called a population. Each iterative step where a new population is obtained is called a

generation.

A basic GA procedure has the following steps.

1. Define an objective/fitness function, and its variables. Set GA operations (such
as population size, parent/offspring ratio, selection method, number of crossovers
and mutation rate).
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2. Randomly generate initial population.

3. Evaluate each individual (or chromosome) in the initial population by the objec-
tive function.

4. Generate an offspring population, by GA operations (such as selection/mating,
crossover, and mutation).

5. Evaluate each individual in the offspring population by the objective function.

6. Decide which individuals to include in the next population. This step is re-
ferred to as “replacement” in that individuals from the current parent population
are “replaced” by a new population, whose individuals come from the offspring
and/or parent population.

7. If a stopping criterion is satisfied, then the procedure is halted. Otherwise, go to
Step 4.

GAs are a large family of algorithms that have the same basic structure but differ

from one another with respect to several strategies such as stopping rules and operations

which control the search process. Based on previous experiences, in this study, we use

a continuous GA where chromosomes are coded as continuous measurement variables.

We also make the following assumptions. The (parent) population size is 2k and the

offspring population size is also 2k. The type of selection we utilize is random pairing.

The blending crossover is utilized and the number of crossover points depends on the

number of dimensions of a specific objective function. Random uniform mutation is

utilized and the mutation rate is set around or equal to 1/k. The type of replacement

over both parent and offspring population is ranking or tournament. There are two

stopping rules used in this study. Stopping rule 1 is that the GA is halted at the

pre-selected number of generations. Stopping rule 2 is that the GA is halted when a

cutoff value (which is pre-selected and considered as a near-global value) is achieved.

For details on the setting of the GA operations, see, for example, Goldberg (1989),

Hamada et al. (2001), Mayer, Belward and Burrage (2001), Francisco Ortiz et al.

(2004) and Haupt and Haupt (2004).
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Local Directional Search Methods

The GA itself does not utilize a directional search explicitly. In order to improve the

computational efficiency of the GA, we modify the GA by incorporating a directional

search into the GA process. As mentioned in the introduction, we use four different

methods of a local directional search to develop the four MGAs: the method of steep-

est descent (SD), the Newton-Raphson method (NR), the method of a derivative-free

directional search (DFDS), and the method that combines SD and DFDS. The four

local search methods will be discussed in the next four subsections, respectively.

The Method of Steepest Descent

The method of the steepest descent (SD) was originally introduced by Cauchy in

1874. It starts at an arbitrary point on the surface of an objective function, f(x),

where f is the objective function and x is the arbitrary point, and minimizes along the

direction of the gradient. The simple formula for the (n + 1)th iteration at location xn

(where xn = [xn1, ..., xnk]
′) is given by

xn+1 = xn − ρn∇f(xn), (1)

where ρn is a non-negative scalar and ∇f(xn) = [∂f/∂xn1, ..., ∂f/∂xnk]
′ is the gradient-

based vector. Obviously, each step by SD requires the first derivative of f to calculate

a specialized gradient based on that particular location. Note that if one wants to

find a maximum of f and to maximize along the direction of the gradient, then the ρn

should be non-positive. More details on SD can be seen in Haupt and Haupt (2004).

The Newton-Raphson Method
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Newton-Raphson method (NR), a second directional search procedure, is based on

a first-order Taylor series expansion of the function about the point xn given by

f(x) ≈ f(xn) + (x − xn)′∇f(xn), (2)

where x is some point near xn. To find an optimal value of f , taking the gradient of

both sides of (2) and setting it equal to zero yields

∇f(x) ≈ ∇f(xn) + Hn(x − xn) ≡ 0,

where Hn is the Hessian matrix with elements given by hnjl = ∂2f/∂xnj∂xnl, j and l =

1, ..., k. Thus the next point, xn+1, can be found by

xn+1 ≈ xn − H−1

n ∇f(xn). (3)

More details on NR can be seen in Haupt and Haupt (2004).

Compared to SD in (1), NR requires calculating the Hessian matrix (which involves

the second derivative of f) and its inverse and thus it usually takes more time than

SD for each function evaluation. However, NR does not require the adjustment to

the moving step (ρn in formula (1)) as SD does, since −H−1
n takes the amount of the

moving step into account. In practice, the NR method often requires fewer steps than

the SD method to converge to an optimal solution.

A Derivative-free Directional Search Method

The SD and NR methods both require the partial derivatives of an objective func-

tion f . It is not expected that SD or NR can always find a proper direction from

the current point, since an objective function usually is not simple and unimodal, but

very complicated, locally rough and unsmoothed. Thus, we developed a new local

directional search method which is derivative-free and denoted by “DFDS.”
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The goal of DFDS is to find an appropriate direction so as to build the path with-

out requiring the gradient, ∇f(xn). Here we build three potential directions associated

with the best offspring in a GA process. When the best offspring is also the best in

the current parent population, there is an improvement from its parents to the best

offspring in terms of the objective function. It may be possible to make continuous im-

provements by moving along the directions/paths from its parents to the best offspring.

That is, some data points are “collected” along the paths until no further improvement

can be found.

When the best offspring among both the offspring and parent populations is found,

we can trace back to find its parents. These parents then can be considered as two

different starting points. Both of their first steps from the two starting points go to

the same point: the best offspring. So two directions are established: one is from

one of the parents to the best offspring; the other is from the second of the parents

to the offspring. Both directions have obtained improvement, since the best offspring

of interest is an improvement over both its parents in terms of values of an objective

function.

For example, consider a 2-dimensional (k = 2) problem along with the contours of

a response (or values of an objective function) as illustrated in Figure 1. In general,

the best offspring among the offspring and the current parent population is denoted

by O (expressed as xO = [xO1, ..., xOk]
′) and its parents are denoted by P1 (xP1 =

[xP11, ..., xP1k]
′) and P2 (xP2 = [xP21, ..., xP2k]

′). Obviously, there are two directions:

one is from P1 to O, expressed as δP1O = xO − xP1 = [δ11, δ12, ..., δ1k]
′ and the other is

from P2 to O, expressed as δP2O = xO − xP2 = [δ21, δ22, ..., δ2k]
′. We refer to these two

directions as the Parent 1 and Parent 2 directions.

The third direction is the “common” direction, expressed as δ = [δ31, δ32, ..., δ3k]
′,
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and based on the two parent directions. If δ1i and δ2i, for i = 1, ..., k, are both positive

(negative), then δ3i is positive (negative). That is, if both the parent directions are in

common, say, both positive (negative) along the Xi axis, then the third direction is

positive (negative) along the Xi axis. If δ1i and δ2i are opposite in direction, then δ3i

is set to 0. That is, if the parent directions are not in common on the Xi axis, then

the third direction has no movement along the Xi axis. For more details on the three

directions and determining their moving distances for each moving step, see Appendix

A.

Figure 1 illustrates the three defined directions. The optimal point is denoted by

“Θ”. It is easy to see the two parents directions, expressed as δP1O = [δ11, δ12]
′ and

δP2O = [δ21, δ22]
′ respectively. The third direction δ = [δ31, δ32]

′. Obviously, δ31 > 0

since both δ11 > 0 and δ21 > 0. That is, the common direction in this case is positive

along the X1 axis. And δ32 = 0 since δ12 > 0 and δ22 < 0. That is, the common

direction has no relative movement along the the X2 axis.

[Insert Figure 1 about here.]

Once the three directions are defined, starting at O, the DFDS method moves along

the three directions/paths, with some appropriate moving distance for each moving step

until no improvement is found in terms of an objective function. In Figure 1, the three

“stars” on the paths denote that the three best points found on each path and the

processes of moving along the paths will be stopped at their next points due to no

further improvement.

A Method Based on Combining SD and DFDS

Unlike the SD, NR, DFDS methods, the fourth method we used in this study is

a “combined” method that combines SD, a derivative-base search method with one
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direction generated, with, DFDS, a derivative-free search method with three directions

generated. Therefore, this method provides a total of four directions to search for the

best point.

A Summary of the Methods of a Local Directional Search

In summary, the four local directional search methods used in our four MGAs in this

study are SD, NR, DFDS, and the method that combines SD with DFDS. There are

many other MGAs that may be considered by using other derivative-based directional

searches combined with other derivative-free directions.

We choose these four local directional search methods for our four MGAs because

we have the following concerns: (1) SD is quite simple, efficient, but requires the first

derivative of f . (2) NR is a very popular optimization tool but requires calculating the

Hessian matrix and its inverse matrix. Thus, it may take much more time than SD for

each function evaluation. (3) DFDS with the three directions generated is intuitive,

reasonable, and derivative-free. (4) For the method that combines SD with DFDS, we

want to determine if such a combination performs better than either the SD or the

DFDS, separately.

Modified Genetic Algorithms

We developed four versions of a modified genetic algorithm (MGA). These MGAs

are listed as follows: (1) if a directional search by SD is utilized by the GA process,

then the MGA is denoted by “MGASD;” (2) if a directional search by NR is utilized,

then the MGA is denoted by “MGANR;” (3) if a directional search with the three

directions, the DFDS method, is utilized, then the MGA is denoted by “MGA3;” (4)

if a directional search with a total of four directions combined by SD and DFDS, then

the MGA is denoted by “MGA4.”
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These MGAs have the same main idea: utilizing numerical information from a

GA process itself to find some appropriate local directions by only requiring a few

extra function evaluations so that the GA process may be guided to further possible

improvement. The numerical information we utilized in our study is focused on the

best offspring among both the current parent and offspring populations.

The general procedure for each MGA is the same as that of GA, except that in the

ith generation we add Step D between Step 5 and 6 in the original GA procedure as

follows:

D. Is the best offspring in the offspring population also the best over the current
parent population?

D-1. If no, directly go to Step 6.

D-2. If yes, then define and implement a local direction. Collect data points along
the paths with some appropriate moving distance until no improvement is
observed in the objective function. Find the best point and replace the best
offspring by the best point. Then go to Step 6.

The choice of the size of an appropriate moving distance, d, depends on how bumpy

the surface of an objective function is. If the surface is very bumpy relative to the

region of the domain, then the appropriate d should be relatively small. Otherwise,

the appropriate d should be relatively large to make the MGAs more efficient.

Actually, the general MGA process is a special GA process with an extra “branch”

(illustrated in Step D) (i.e. requiring only a few extra function evaluations), where the

best offspring which is also the best over the current parent population is found. Within

the branch, a local direction can be defined by SD, NR, DFDS, or the method that

combines SD and DFDS. Along the direction(s)/path(s), data points are collected (i.e.

evaluated in terms of an objective function) with an appropriate moving distance for

each moving step until no further improvement is found. The best offspring from the

parent population is replaced by the best point found on the paths. Then the branch
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is ended with possible improvement for the MGA by replacing the best offspring with

the new best point found and the MGA process is continued like a GA process until a

new extra “branch” is found and generated. That is, a new best offspring, which is also

the best in a new current parent population, is found. The whole process is iterated

until some appropriate stopping rule is satisfied.

Each MGA is essentially a modification to a GA. Thus, if the GA can jump out of

a local optimum, so can the MGAs. In addition, each MGA will more likely produce

an improved solution than that obtained by the GA with the same setting of the GA

operations. An improved solution results when, under the same situation and the

same stopping rule, the best solution found by each MGA is closer to the true global

solution (in accuracy) and/or converges faster to a global optimum than by the GA

(in computational efficiency).

Computational details for implementation of a directional search into a GA process

by the SD, NR, and DFDS methods are found in Appendixes B, C and A, respec-

tively. Details for implementation by the method that combines SD and DFDS are

straightforward from the details of implementation by SD and DFDS.

Examples

In our examples, the main goal is to compare the four MGAs with the GA in com-

putational efficiency and in accuracy for different objective functions under a variety of

combinations using different levels of GA operations. At the same time, our sub-goal

is to find optimal levels for each operation among a variety of levels of interest for each

MGA and the GA.

To make the comparisons more fairly comparable, whenever possible, the same ran-

dom numbers generated within the GA are also used within each version of the MGAs.
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Therefore, an experiment is conducted through a split-plot design (Hinkelmann and

Kempthorne, 1994) so that paired comparisons can be made under the same settings

of the operations and using the same random numbers.

The three whole-plot factors are the three main GA operations: replacement type

(denoted by “type” in subsequent references), crossover points (denoted by “crossover”),

and mutation rates (denoted by “mutation”). The factor type has two levels: rank-

ing (0) and tournament (1). The factor crossover and the factor mutation have two

or three levels, depending on the number of variables used in the objective function.

Essentially, these combinations of the three factors correspond to the settings of the

three main GA operations. The sub-plot factor is “method” which has five levels: one

is the GA (denoted by method = 0) and the other four are MGASD, MGANR, MGA3,

and MGA4 (denoted by method = 1, 2, 3, and 4, respectively).

Under the same setting of the GA operations, the GA and the four MGAs may

obtain a different optimum value for different random seeds. Therefore, a Monte Carlo

experiment is performed for each specific combination of levels of these three GA

operations and repeated 500 times using different random seeds.

Two Stopping Rules

Two different stopping rules are utilized in the experiment. Under rule 1, the

algorithm will be halted at a pre-selected number of generations. Thus, this stopping

rule can be used to compare the five algorithms for accuracy in finding the optimal

value of the objective function. Our MGAs all require extra evaluations of the objective

function, f , and MGA4 usually requires the most evaluations of f among the four

MGAs found in our studies. Thus, under the same random seed and the same settings

of the GA operations, we let the traditional GA run the number of evaluations equal
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to the number of the extra evaluations of MGA4 added onto the pre-selected number

of evaluations (which is equal to the number of generations times the population size).

Under rule 2, the algorithm will be halted when the cut-off value, which is close to

the optimal value and beyond all-possible local optima, is achieved. In our examples

except for the case study, the optimal values are known. Thus, the second rule can be

used to compare the five algorithms for efficiency in finding the optimal value of the

objective function.

Comparison Criteria

There are three responses of interest used for comparing the four MGAs to the GA.

The first one is the best optimal value of an objective function obtained by the GA or

MGAs. We denote this optimal value by “best.” The second response of interest is the

distance from the location of the best value obtained to the location of the true optimal

value, denoted by “distance.” The third response is the total number of evaluations of

the objective function, denoted by “evaluation.” Under stopping rule 1, the interesting

responses are best and distance. Under stopping rule 2, the most interesting response

is evaluation, with best and distance also of interest.

Boxplots (from Minitab) will be our graphical tool to compare the four MGAs to

the GA across all the combinations. The numerical criteria utilized for comparison

are (1) the mean squared error (MSE) of the responses best and distance, denoted

by “MSE(best)” and “MSE(distance),” respectively; (2) the mean and variance of

the number of evaluations (the response evaluation), denoted by “Mean(evaluation)”

and “Var(evaluation),” respectively; and (3) the number of winners among the 500

replications between any two of the four algorithms for each setting of the operations

(or each combination) in terms of the responses best, distance or evaluation, denoted
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by “Count(best),” “Count(distance),” and “Count(evaluation),” respectively.

For Criteria (1), the MSE is given by

MSE =

500
∑

i=1

(yi − T )2

500
, (4)

where yi is a response (either best or distance) and T is an true optimum for the

response yi. For Criteria (2), the MSE cannot be used for the response evaluation,

since no optimum exist for this response. Thus the estimated mean and variance are

used as criteria for evaluation in our study. For Criteria (3), among the five algorithms

there are a total of ten paired comparisons in terms of the number of winners among the

500 replications for each combination, where a “winner” refers to the most favorable

response among each pair of responses being compared. For each paired comparison,

there may be some ties when the values obtained by one algorithm are equal to the

values by another algorithm. For example, to compare GA versus MGASD in terms of

Count(evaluation), it follows that “Count(evaluation) by GA” + “Count(evaluation)

by MGASD” + “Ties(evaluation)” = 500. In the following examples, the numbers of

counting ties will not be presented.

Computational time is used to compare the computational efficiency. Besides

MGANR, the computational time of a single function evaluation with a local direc-

tional search implemented for each of the other three MGAs is not very different from

that by GA in our C++ code, especially for the cases with a single function evaluation,

a time-consuming task. Thus, the number of evaluations under stopping rule 2 will be

an appropriate indirect measurement of total computational time for each of the GA,

MGASD, MGA3, and MGA4 procedures.

Comparisons for the Benchmark Functions
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For the comparisons of GA, MGASD, MGA3, MGA4, and MGANR, we have selected

five objective functions used in previous GA literature. The five objective functions

are (1) the sphere model in 2-dimension with smooth surface (Back, 1996), (2) and (3)

the Schwefel’s function with relatively a bumpy surface (which has been utilized as a

benchmark function by Araujo and Assis (2001)) in 5- and 20-dimension respectively,

(4) and (5) the Rastrigin’s function with a very bumpy surface (another benchmark

function by Araujo and Assis (2001)) in 5- and 20-dimension respectively. The results

from all these five objective functions show that MGASD, MGA3, MGA4, and MGANR

all perform better in both accuracy and computational efficiency than GA over nearly

all combinations and all criteria. The exception is for function (4) (the Rastrigin’s

function in 5-dimension) in terms of the MSE of the response distance where all MGAs

outperform GA in seven combinations out of 18. As an example, we only present some

results for function (5) (Rastrigin’s function in 20-dimension). This function presents

a serious challenge to the GA and the MGAs, due to a very bumpy surface of the

function in high dimensions. For details about the sphere model and the Schwefel’s

function, see Appendix D.

Comparisons for the Rastrigin’s function with 20 dimensions

A generalized Rastrigin’s function is given by

f(x) =

k
∑

i=1

(x2

i − 10 cos(2πxi) + 10), where − 5.12 ≤ xi ≤ 5.12, (5)

where k is the number of dimensions of the function. Figure 2 shows its 1- and 2-

dimensional surfaces. The surfaces are very bumpy in a narrow range [-5.12, 5.12].

The goal is to find a minimal value and its corresponding location by GA and MGAs.

The minimum of this function is known as min(f(x)) = f(0, ..., 0) = 0. In this study,

we compare the five algorithms using the function in 20 dimensions (that is, k = 20).
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[Insert Figure 2 about here.]

To conduct a split-plot design, the levels of the three whole-plot factors are as

follows. The factor type has 2 levels: ranking and tournament; the factor crossover

has levels: 2, 4, and 8; and the factor mutation has levels: 0.04, 0.05, and 0.06. There

are a total of 18 combinations of type, crossover and mutation. Note the middle level

for mutation of 0.05 is 1/k where k is the number of genes (or dimensions). For

stopping rule 2, the cut-off value, which is a near-global optimum, is set to 0.5. The

pre-selected number of generations used by stopping rule 1 is 5,000. The appropriate

moving distance for each moving step, d, is set to 0.05.

Under stopping rule 1, Figure 3 presents boxplots for the responses best and distance

across the 500 repetitions for the MGAs and GA models for each of the 18 combinations

of type, crossover and mutation. This figure illustrates that MGASD, MGA3, MGA4,

and MGANR all perform better than GA over all 18 combinations in terms of the

best value and the distance. Not only are all these four new methods more accurate

(plots closer to the true minimal value 0), but also more precise (plots exhibit less

spread) over all situations. Among the four MGAs, MGANR performs the best in both

accuracy and precision, since the 500 best values obtained by MGANR all achieve zero

(the true minimum) across all of 18 combinations. In addition, MGASD and MGA4

both perform much better than MGA3: when type is 0 (ranking), the best values

found by both MGASD and MGA4 are all zero across all of the nine combinations

shown in the top left boxplot; when type is 1 (tournament), most of the best values

by both MGASD and MGA4 are zero except for a few outliers shown in the top right

boxplot. The boxplots by the response best and by the response distance express

similar patterns. That is, lower best values have smaller distances. The numerical

results including the MSE of best and distance (which are not presented here) also
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match well with Figure 3.

[Insert Figure 3 about here.]

Under stopping rule 1, the amounts of time recorded to complete the 500 repetitions

for GA, MGASD, MGA3, MGA4, and MGANR are 22959, 23614, 23120, 23628, and

38616 seconds, respectively. Except for MGANR, the times of the other four algorithms

are relatively similar to each other. The slight differences in the amounts of time

between the other four are due to the slightly different computations required for

each MGA/GA and to the slightly different numbers of extra function evaluations for

MGASD, MGA3, and MGA4. The reason that MGANR took much longer than the

other four is in calculating the Hessian and its inverse matrix in formula (3).

Under stopping rule 2, Table 1 presents the mean of the number of function evalu-

ations and its estimated Monte Carlo (MC) error as a summary of the 500 repetitions

for comparisons of the five algorithms. It shows that the numbers of evaluations re-

quired to obtain a value of the objective function within 0.5 of the true minimum by

MGASD, MGA3, MGA4, and MGANR are all consistently less than required by GA

over all combinations. Among the four MGAs, MGANR performs the best with much

smaller mean values for the number of function evaluations than the other three MGAs

over all combinations. Among the other three MGAs, MGASD has the smallest mean

values of the number of function evaluations in 12 combinations out of 18, MGA4 has

the smallest mean values in five combinations, while MGA3 has the smallest value in

only one combination (which is the 17th).

[Insert Table 1 about here.]

Also under stopping rule 2, Table 2 presents the paired comparisons of GA, MGASD,

MGA3, MGA4, and MGANR (denoted by “0, SD, 3, 4, and NR,” respectively) in
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terms of the number of winners among the 500 replications for each combination with

respect to the response evaluation (denoted by “Count(evaluation)”). Note that Table 2

presents only six paired comparisons, not ten (the total number of paired comparisons),

because these sixed paired comparisons are sufficient to rank these five algorithms.

These paired comparisons show that all MGAs have more winners than GA over all

combinations in terms of the count of the number of evaluations. Among the four

MGAs, MGANR has consistently the most winners over all combinations. MGASD has

the most winners than the other two MGAs across all the combinations, and MGA4

has more winners than MGA3 over all combinations.

[Insert Table 2 about here.]

The amounts of time recorded for GA, MGASD, MGA3, MGA4, and MGANR, under

stopping rule 2, are 5622, 3717, 4137, 3702, and 15 seconds, respectively. Obviously,

MGANR finds the optimal solution very quickly, with MGASD and MGA4 as the next

fastest, while the GA is the slowest. These results match well with those in Tables 1

and 2.

Some Other Details on Comparisons Among the Four MGAs using the Bench-

mark Functions

Among our four MGAs, in the examples of the benchmark functions, MGANR

performs the best in terms of our criteria except for the amount of time recorded under

stopping rule 1 for the Rastrigin’s function with very bumpy surface in 5- and 20-

dimensions. Among the other three MGAs, under stopping rule 1, MGASD and MGA4

are quite competitive with each other and both perform much better than MGA3 in

most cases. In addition, under stopping rule 2, MGASD performs better than MGA4

and MGA3, and MGA4 performs better than MGA3 in most cases.
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In the examples using Rastrigin’s function in 5- or 20-dimensions, the results show

that MGANR exhibits superior performance over the other three MGAs, especially

when using stopping rule 2. When under stopping rule 1, MGANR took much more

time to finish the MGA process than the other three MGAs, although MGANR still

has the best performance by far in terms of other criteria such as MSE(best) and

MSE(distance). Except for the time concern, it seems that the local directional search

using NR greatly helps the GA process jump out of local peaks or valleys towards the

global optimum. But this superior performance by MGANR appears to hold only for

a function with a very bumpy surface. When the Schwefel’s function is used with its

relatively bumpy surface, the results (not presented in this paper) show MGANR still

performs better than MGASD, but both algorithms are very competitive with each

other in terms of all criteria including the amount of time taken. It seems that when

the peaks or valleys are further away from each other, the search by NR does not easily

jump over them as when the peaks or valleys are quite close to each other.

Comparisons for the Case Study: A Chemical Process

The real example used to illustrate our methods is taken from Myers and Mont-

gomery (2002), where a central composite design (CCD) was conducted on a chemical

process. Two independent variables (or factors) are time (x1) and temperature (x2).

Three responses of interest are yield (y1), viscosity (y2) and number-average molecule

weight (y3). The collected data are given in Myers and Montgomery (2002). As in

Myers and Montgomery (2002), we transform the natural independent variables into

the coded variables within the range of [0, 1].

In this case study, their multi-response optimization goal is to maximize y1 (the

minimum L = 70 and optimum T = 80), achieve a target value for y2 (the minimum
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L = 62, the target T = 65, and the maximum U = 68), and, at the same time, control

y3 within the acceptable range of [3200, 3400]. The desirability function method by

Derringer and Suich (1980) is utilized to find simultaneous optimum solutions of the

responses y1, y2, and y3.

The desirability function (which is the objective function utilized in GA and the

MGAs) is given by

D = (d1 × d2 × · · · × dm)1/m × 100%, (6)

where m is the number of responses and di is the ith individual desirability, which is

given in Derringer and Suich (1980). The researcher’s goal is to find the common loca-

tion, x, where the maximum value of D is achieved, indicating, in some way, the best

location, x, where all the responses achieved their most desirable values simultaneously.

In addition, the solution vector, xs, should be controlled within the experimental region

R, which is defined as (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.52 in this case study.

Under the same conditions such as experimental priority and fitted models given in

Myers and Montgomery (2002), the two solutions we found by GA are listed as follows.

1) x1 = 0.5758 x2 = 0.1624 ŷ1 = 78.6344 ŷ2 = 65.0000 ŷ3 = 3260.7992 D = 0.9292
2) x1 = 0.2661 x2 = 0.7964 ŷ1 = 78.2694 ŷ2 = 65.0000 ŷ3 = 3399.1632 D = 0.9094

These two solutions are different from the two solutions obtained by Design-Expert

as shown in Myers and Montgomery (2002) (whose two values of D are 0.822 and 0.792)

in terms of fitted optimal values for all of the three responses. The solutions obtained

by GA result in larger values of D, indicating that GA performs better at finding the

optimal value of D than the algorithm used by Design-Expert in this example.

Figure 4 represents the surface (the left graph) of the desirability function D within

the experimental region R and its corresponding contour plot (the right graph). The

figure shows that there are two distinct surfaces which represent two disjoint operating
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regions. Obviously, the surface of D matches well to the contour plot. In addition,

the two optimal solutions we found also match well to the figure. Notice that if the

case study had more than two or three factors/dimensions, then it would be hard to

graphicly show the surface of the desirability function D and its contour plot. Thus, in

such a situation, we could not depict graphically the location of the optimal solution.

But we still could use either the MGAs or GA to find its optimal or near-optimal

solution.

[Insert Figure 4 about here.]

To compare the performance of GA, MGASD, MGA3, MGA4, and MGANR on this

example, a split-plot design is conducted and repeated 500 times, similar to the design

used in the five examples mentioned above. The pre-selected number of generations

was set at 50. The appropriate moving distance was set at 0.001. Since the true optimal

solution is unknown, the response “distance” cannot be measured in this application.

Stopping rule 2 is also not suitable in this example, since the pre-specified cutoff which

is a near-global optimal value is unknown. We consider only two levels of the factor

crossover instead of three considered in the previous example. Thus, there are only 12

combinations of our three factors, type, crossover, and mutation. To calculate the MSE

of the response “best” of the desirability function D, MSE(best), for each combination

with 500 repetitions, based on formula (2), we need the value of T , the true optimum

(the maximum of D), which is, however, unknown in this case. Since the maximum of

D is generally close or equal to one, T is set to be one for this example.

Table 3 presents the results with respect to the MSEs of the response “best” of

the desirability function D and the estimated MC error for each combination under

stopping rule 1 for this case study. It shows that MGA4 has the smallest MSEs among
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the five algorithms over all 12 combinations. MGA3 has the next smallest MSEs over all

combinations. MGASD has smaller MSEs than GA in six combinations, while MGANR

has only one smaller MSE value than GA.

[Insert Table 3 about here.]

Also under stopping rule 1, Table 4 presents the results on the six paired compar-

isons of GA, MGASD, MGA3, MGA4, and MGANR in terms of the number of winners

among the 500 replications for each combination with respect to the response best

(denoted by “Count(best)”). For the same reason as Table 2, this table presents only

six paired comparisons, not ten. These paired combinations show that MGA4 has su-

perior performance since it consistently has more winners than the other four over all

combinations. MGA3 performs the second best since it has more winners than GA,

MGASD, and MGANR over all combinations. MGASD is the third best since it has

more winners than GA and MGANR in most combinations. However, MGANR is even

worse than GA over all combinations.

[Insert Table 4 about here.]

The results in Table 4 match well with those in Table 3. The amounts of times

recorded for GA, MGASD, MGA3, MGA4, and MGANR are 54, 47, 52, 53, and 49

seconds, respectively.

Unlike the results for the benchmark functions, MGASD and MGANR both perform

worse than MGA3. We speculate that one reason for this result is that the surface of

the desirability function in the case study has two disjoint “mountains”, both of which

are locally irregular, unlike the surfaces of the five objective functions which are locally

smooth and regular. One reason that MGANR is worse than GA under stopping rule
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1 is that the number of function evaluations required by MGANR is less than the total

of number of evaluations run by GA, which is equal to the number of extra evaluations

of MGA4 added onto the pre-selected number of evaluations. When we let GA run the

number of evaluations equal to the number of the extra evaluations of MGANR (which

is smaller than the number of the extra evaluations of MGA4) added onto the pre-

selected number of evaluations, the results show that MGANR has the smaller MSEs

than GA in eight combinations out of 12.

Summary on the GA/MGAs Optimal Settings from the Examples

Recall that our goal for this study is to find optimal levels for each operation

among a variety of levels of interest to the user of either MGAs or GA. A Monte

Carlo experiment has been performed for each combination of levels of the three GA

operations (type, crossover and mutation). In this study, the optimal settings for each

algorithm are decided based on the MSEs of the response “best” when using stopping

rule 1, and based on the mean of the response “evaluation” when using stopping rule

2.

Table 5 presents the summary of the optimal settings for GA, MGASD, MGA3,

MGA4, and MGANR from the examples including the case study. The first row of this

table says that in the case study with two factors, under stopping rule 1, the optimal

setting for all of the five algorithms is tournament replacement, one crossover point,

and 0.6 mutation rate. The presentations of the other rows follow the format of the

first row.

[Insert Table 5 about here.]

From Table 5, it seems that under the different stopping rules, each specific example

has its own optimal GA setting for each of the five algorithms. These results seem to
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agree with the “No Free Lunch Theorems for Optimization” conclusions by Wolpert

and Macready (1997), which states that the optimal GA setting is problem-dependent

and there are no general optimal GA settings.

However, from Table 5, there are some rules we may follow before either the MGAs

or GA are run. First, the factors crossover and mutation both depend on the length of a

chromosome/string (which is the number of genes in a chromosome). Second, ranking, a

replacement type, is preferred in most cases, especially when the surface of an objective

function is bumpy or very bumpy. Third, the factor crossover is important and the

number of crossover points should be increased as the length of a chromosome increases.

Fourth, the optimal mutation rate is approximately equal to 1/k, as suggested in Back

(1996).

Conclusion and Discussion

This paper presents the four versions of modified GAs: MGASD, MGA3, MGA4, and

MGANR, all of which make an improvement over the traditional GA both in accuracy

(by stopping rule 1) and in computational efficiency (by stopping rule 2) in most cases.

The main idea in our modification is to implement a local directional search into the

GA process. The local directional searches utilized in this paper to develop our four

MGAs include using SD, NR, DFDS, and the method that combines SD with DFDS.

MGASD and MGA4 both require the first derivative of f , MGANR requires calculating

the Hessian matrix with the second derivative of f and its inverse matrix, while MGA3

requires no derivative calculations.

Several examples, including a case study of a chemical process, are used to facilitate

comparisons of GA, MGASD, MGA3, MGA4, and MGANR. Such examples include

comparisons between low-dimensional and high-dimensional problems, and smooth,
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relatively bumpy and very bumpy surfaces. Numerical and graphic comparison results

in all of the examples show that the new MGAs procedures perform better than the

traditional GA procedure in most cases.

Among the four MGAs, the results show that MGANR performs the best in the

examples using the benchmark functions (Araujo and Assis, 2000) in terms of all

comparison criteria, except for the amount of time taken under stopping rule 1 for

the benchmark function with a very bumpy surface. Under stopping rule 2, MGANR

demonstrates a considerable improvement over the other MGAs regarding all criteria

including the amount of time when using the benchmark function with a very bumpy

surface. However, when using the benchmark functions with relatively a less bumpy

surface (like the Schwefel’s function) or a smooth surface (like the spherical model),

MGANR and MGASD are quite competitive in terms of all criteria including the amount

of time.

Among the other three MGAs, under stopping rule 1, the comparison results in the

examples of the benchmark functions show that MGASD and MGA4 are competitive

with each other and both perform much better than the MGA3 in most situations.

Under stopping rule 2, the comparison results show that MGASD performs the best

with MGA4 performing better than MGA3 in most situations. In summary, for our

benchmark functions, MGANR is the top method, followed in order by MGASD, MGA4,

and MGA3.

However, the results in the case study are quite different from those in the examples

based on the benchmark functions. In the case study, the results show that in terms of

all criteria, MGA4 exhibits superior performance, followed in order by MGA3, MGASD

and MGANR. We speculate that one reason that MGASD and MGANR both perform

worse than MGA3 is that the surface of the function in the case study has two disjoint
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“mountains”, both of which are locally irregular, unlike the surfaces of the benchmark

functions which are locally smooth and regular.

Based on all the results in the examples including the case study, we prefer to use

MGA4 if the first derivative can be taken for an objective function f . If the second

derivative can be taken for f and if the surface of f is very bumpy but locally smooth

and regular, then we would choose MGANR. But if derivative cannot be taken for f ,

then MGA3 is the only suitable choice.

Several issues remain for further study. For example, the three derivative-free di-

rections defined in MGA3 may not be optimal. Additionally, the derivative-based

directions defined in MGASD and MGANR may also not be optimal. Perhaps, there

are other directions better than the four we have chosen in this paper. Another issue

concerns the appropriate moving distance, once the directions are chosen. The size

of an appropriate moving distance, arbitrarily chosen by us, may greatly affect the

efficiency of the MGAs. The last issue is on the optimal setting of the GA operations.

In this study, type of replacement, the number of crossover points, the mutation rate,

the three main GA operations, have been studied. However, there may be some other

operations affecting the GA performance, such as population size and parent/offspring

ratio. We plan to study these issues in future work.

C++ code is available upon request from the authors.

APPENDIX A

Mathematical Representation of the Three Directions in MGA3

We first introduce our notation. Parent 1 (P1) is given by xP1 = [xP11, ..., xP1k]
′,

where x is a vector of size k × 1 where k is the number of factors or the number
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of dimensions. Similarly, Parent 2 (P2) is given by xP2 = [xP21, ..., xP2k]
′, and their

offspring (O) is expressed as xO = [xO1, ..., xOk]
′. The Parent 1 direction (from P1

to O) is expressed as δP1O and the Parent 2 direction (from P2 to O) is as δP2O.

And the common direction is simply denoted as δ. The new points after the first

step along the three directions are expressed as xNew1 = [xNew11, ..., xNew1k]
′, xNew2 =

[xNew21, ..., xNew2k]
′, and xNew = [xNew1, ..., xNewk]

′, corresponding to Parent 1, Parent

2, and their common direction respectively. The appropriate moving distance on each

axis in each moving step is expressed as d.

The parent 1 direction, which essentially is the different distances on each dimension

between points P1 and O, is expressed as

δP1O = xO − xP1 = [δ11, δ12, ..., δ1k]
′. (7)

Similarly, the parent 2 direction is expressed as

δP2O = xO − xP2 = [δ21, δ22, ..., δ2k]
′. (8)

To keep the same directions and move along the three paths, the moving distance on

each axis should be in constant proportion to each other, as the method of steepest

ascent/descent in response surface methodology (RSM). [In RSM, the constant pro-

portion on the ith dimension is defined as β̂i/β̂
∗, where the β̂i is the ith estimated

coefficient in the estimated first-order model and the β̂∗ is the largest coefficient in

magnitude among the k estimated coefficients, that is, β̂∗ = max
i=1,...,k

|β̂i|. From this

ratio, we can see that the proportion only depends on the βi, the ith coefficient. The

moving distance on the ith dimension is defined as (β̂i/β̂
∗) ∗ ρ, where the ρ is an ap-

propriate fixed distance. (For more details, please see Myers and Montgomery (2002)

in page 205-207.)]
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In our GA application, the main idea in moving along the parent 1 path is the

same as that in the method of steepest ascent/descent. That is, to keep the constant

proportion in each dimension and move some appropriate fixed distance (which is d

in our case) along the parent 1 path. But the difference between our GA case and

RSM is the starting point. In the GA case, the starting point is P1, not O. That is,

the first step has already been completed. So the next moving step starts at O. The

largest moving distance in the first step is also not d, but max
i=1,...,k

|δ1i|, where the δ1i is

the moving distance on ith axis in Equation (A.1). Let δ∗1 denote max
i=1,...,k

|δ1i|. In our

study, if δ∗1 < d, then the moving distant in the next step will be δ∗1 . Otherwise, the

distance in the next step will be d. The distance d is obviously utilized to control the

next moving distance.

The procedure of moving along the parent 1 direction is as following.

1. Calculate δP1O and then find δ∗1 = max
i=1,...,k

|δ1i|, the largest distance in the first

moving step.

2. If δ∗1 < d, then the next new position on the ith axis, i = 1, ..., k, is defined as
xNew1i = xOi + (δ1i/δ

∗

1) × d. Otherwise, the new position is xNew1i = xOi + δ1i.

3. Check the region of the new point xNew1 = [xNew11, ..., xNew1k]
′. If xNew1i is

greater than its upper bound (which is the largest value in the ith domain), then
let it be the upper bound . Similarly, if it is less than its lower bound (which is
the lowest value in the ith domain), then let it be the lower bound. (Usually, the
upper bounds and lower bounds have been given through defining the objective
function.)

4. Evaluate the new point xNew1 by the objective function. If the new point performs
worse than the point xO, then the process of moving along the parent 1 direction
is halted. If the new point performs better than the xO, then replace the point
xNew1 by the next new point xNew1 + ∆N1O, where ∆N1O = xNew1 − xO. (The
”N1O” means ”New point from Parent 1” to ”Offspring”.) Then return to Step
3.

The procedure for moving along the parent 2 direction is the same as that for

the parent 1 direction. However, the procedure for the common direction is slightly
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different from them, due to the different starting points. The starting points from the

parents directions are P1 or P2, while the starting point in the common direction is O.

As mentioned earlier, building the common direction depends on whether both

parent directions are consistent or not. If they are consistent on ith axis (either both

positive or both negative), then move the same direction on the ith axis as the parent

directions. Otherwise, stay on that axis without any movement, due to inconsistent

directions. There is a special case: one of the moving distances on an axis in the parent

directions is zero and the other is nonzero. In this case, we recommend movement in

the same direction with the parent direction with nonzero moving distance on the axis.

The procedure for movement along the common direction is as following.

1. Calculate δP1O and δP2O as Equations (7) and (8).

2. The next new point is defined as xNew = [xNew1, ..., xNewk]
′ along the path from

the common direction. To establish the common direction, three situations on
each axis/dimension are possible: (a) the δ1i × δ2i > 0 which means that there
is a common direction on the ith axis; (b) The δ1i × δ2i < 0 which means that
there is not a common direction on the ith axis; and (c) the δ1i × δ2i = 0 which
means that at least one of δ1i and δ2i equals zero.

2.1. If the situation is (a), then the new point position on the ith axis is given by
xNewi = xOi + min(|δ1i|, |δ2i|, d) if both δ1i and δ2i are positive, or xNewi =
xOi − min(|δ1i|, |δ2i|, d) if both δ1i and δ2i are negative.

2.2. If the situation is (b), the new point position on the ith axis is given by
xNewi = xOi (no movement on the ith axis in this situation).

2.3. If the situation is (c), there are three subcases: (1) δ1i = 0 and δ2i 6= 0; (2)
δ1i 6= 0 and δ2i = 0; and (3) δ1i = 0 and δ2i = 0.

2.3.1. For case (1), if |δ2i| ≥ d, then xNewi = xOi + d (when δ2i > 0) or
xNewi = xOi − d (when δ2i < 0). Otherwise, xNewi = xOi + δ2i.

2.3.2. For case (2), similar to case (1), if |δ1i| ≥ d, then xNewi = xOi ± d.
Otherwise xNewi = xOi + δ1i.

2.3.3. For case (3), xNewi = xOi.

3. Check the range of the new point xNew.
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4. Evaluate the point xNew. If the new point performs worse than the point xO, then
the process for moving along the common direction is stopped. If the new point is
better than xO, then replace the point xNew by the next new point xNew +∆NCO,
where ∆NCO = xNew −xO. (The ”NCO” means ”New from Common directions”
and ”Offspring”). Return to Step 3.

APPENDIX B

Computational Details on A Derivative-based Directional Search by SD

In this appendix, we focus on how to implement SD into the GA process. Suppose

that in the ith iteration, the best offspring, which is the best among both the current

parent and offspring populations, denoted by xO = [xO1, ..., xOk]
′, is found. Then the

MGA procedure will implement a direction determined by SD into the GA process.

Based on formula (1), the procedure of building a derivative-based directional search

by SD into the GA process between the ith and (i + 1)th steps is as follows:

1. The first new point is defined as x1 = xO − d∇f(xO), where d is the size of a
moving distance in each step and xO is the best offspring. If f(x1) < f(xO) in
the case of finding a minimum of f , or f(x1) > f(xO) in the case of finding a
maximum, then go to Step 2. Otherwise, the procedure is halted.

2. Compute xj+1 = xj−d∇f(xj), where the iteration index j = 1, 2, .... If f(xj+1) <
f(xj) for minimization, then repeat Step 2 by letting j = j + 1. Otherwise, the
procedure is halted.

The procedure shows us that it starts at the best offspring, xO, on the surface

of the objective function f and minimizes along the direction of its gradient. This

procedure can be improved by using fractional increments (Myers, 1990, page 429) to

allow the procedure itself to adjust the moving distance in magnitude to the surface of

the objective function. In our study, the strategy on fractional increments implemented

into each step of the procedure of building a direction by SD is as follows:
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1. Let l = 1.

2. Let xj+1 = xj − dγl−1∇f(xj), where γ is a constant value within (0, 1), and
γ = 0.5 in our study.

3. If f(xj+1) < f(xj) for minimization, then the procedure is completed.

4. If f(xj+1) > f(xj), then let l = l + 1 and go back to Step 2.

5. If l > a (where a is some constant integer and a = 5 in our study), then the
procedure is halted.

APPENDIX C

Computational Details on A Derivative-based

Directional Search by NR

Implementation by the NR method into a GA process is quite similar to imple-

mentation of a search by SD. When the best offspring, which is also the best over the

parent population, is found at the ith iteration, implement a directional search by NR

into the GA process between the ith and (i + 1)th steps as the following procedure,

based on formula (3):

1. The first new point is defined as x1 = xO −H−1

O ∇f(xO). If the point x1 is better
than xO in terms of f , then go to Step 2. Otherwise, the procedure is halted.

2. Compute xj+1 = xj −H−1

j ∇f(xj), where the iteration index j = 1, 2, .... If xj+1

is better than xj in terms of f , then repeat Step 2 by letting j = j+1. Otherwise,
the procedure is halted.

This procedure can also be improved by using fractional increments as the procedure

by SD. The following is the strategy on fractional increments implemented into each

step of the procedure of NR.

1. Let l = 1.

30



2. Let xj+1 = xj − γl−1H−1

j ∇f(xj), where γ is a constant value within (0, 1), and
γ = 0.5 in our study.

3. If xj+1 is better than xj in terms of f , then the procedure is completed.

4. If xj+1 is worse than xj in terms of f , then let l = l + 1 and go back to Step 2.

5. If l > a (where a is some constant integer and a = 5 in our study), then the
procedure is halted.

APPENDIX D

Sphere Model and Schwefel’s Function

The sphere model (Schwefel, 1995; Back, 1996; and Haupt and Haupt, 2004) is

given by

f(x) =

k
∑

i=1

x2

i ,

where the k is the number of dimensions of the function. We chose k = 2 in this study

and the range is set to −40 ≤ xi ≤ 60 as in Back (1996). The goal is to find its

minimal value and its corresponding location. Obviously, the minimum value is 0 and

its location is (0, 0).

A generalized Schwefel’s problem 2.26 from Schwefel (1995), is given by

k
∑

i=1

−xi sin(
√

|xi|), where − 500 ≤ xi ≤ 500,

where k is the number of dimensions of the function. The minimum of the objective

function is given by

min(f(x)) = f(420.9687, ..., 420.9687).

The minimum is dependent on k, the number of dimensions. For example, if k =5,

then the minimum value is -2094.9144. If k=20, then the minimum value is -8379.6577.

Figure 5 shows its 1- and 2-dimensional surfaces.
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[Insert Figure 5 about here.]
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Figure 1: A contour plot of a 2-dimensional problem with the three directions indicated:
Parent 1 direction is from P1 to O; Parent 2 direction is from P2 to O; the common
direction is a horizontal dotted line, starting at O towards the positive values on the
X1 axis. The three “stars” represent the three points stopped on the three paths with
no further improvement.
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Figure 2: Surface of Rastrigin’s function. Left: 1-dimension; right: 2-dimension.

35



Figure 3: Multiple boxplots for comparisons of GA, MGASD, MGA3, MGA4, and
MGANR (denoted by “0, SD, 3, 4, and NR,” respectively) in 18 combinations of the
factors type, crossover, and mutation for the Rastrigin’s function with 20 dimensions
by stopping rule 1: the top left is for the response best when type = 0, the top right
is for best when type = 1, the bottom left is for the response distance when type = 0
and the bottom right is for distance when type = 1.
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Table 1: Comparisons of GA, MGASD, MGA3, MGA4, and MGANR (denoted by “0,
SD, 3, 4, NR,” respectively) in terms of mean of the number of evaluations and the
estimated Monte Carlo (MC) error of the mean under the 18 combinations (denoted
by “Comb”) of the factors type, crossover, and mutation (denoted by “t, c, m,” re-
spectively) for the Rastrigin’s function in 20-dimensions by stopping rule 2.

Comb Mean(evaluation) MC error(mean(evaluation))
t c m 0 SD 3 4 NR 0 SD 3 4 NR

.04 30706 15792 22266 15925 115 331 207 272 208 2
2 .05 31310 15859 22585 15996 114 339 208 274 204 2

.06 32366 16415 23274 16600 113 327 215 281 218 2

.04 27280 15598 19511 15749 113 317 222 270 222 2
0 4 .05 26870 15407 19463 15495 108 299 213 254 212 2

.06 28537 16096 21003 16264 111 305 208 262 213 2

.04 25270 15933 17354 16122 108 331 227 246 229 2
8 .05 25604 16018 17554 16224 106 293 218 238 214 1

.06 26705 16564 18917 16744 107 315 227 267 225 2

.04 51259 31001 36751 30899 118 413 371 364 342 2
2 .05 77109 45175 53467 45011 116 722 548 590 555 2

.06 118768 69806 81530 70206 122 1335 1125 1001 1092 2

.04 45254 31973 33970 31918 113 392 338 299 342 2
1 4 .05 70515 49371 53342 49323 117 738 627 635 613 2

.06 113514 78707 87176 78988 116 1558 1260 1332 1228 2

.04 46250 37753 37965 38155 109 444 429 380 416 2
8 .05 89548 74159 71903 73197 111 1379 1179 1082 1250 2

.06 177024 149430 152007 148541 112 3482 3237 3327 3356 2
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Table 2: Numerical six paired comparisons of GA, MGASD, MGA3, MGA4, and
MGANR (denoted by “0, SD, 3, 4, and NR,” respectively) in terms of the number
of winners among the 500 replications for each combination with respect to the re-
sponse evaluation (denoted by “Count(evaluation)”) for the Rastrigin’s function in
20-dimensions by stopping rule 2. The maximal MC error is 11.

Count(evaluation)
0 SD 0 3 0 4 SD 4 3 4 SD NR

1 13 487 79 421 12 488 475 25 78 422 0 500
2 8 492 66 434 11 489 467 32 72 428 0 500
3 14 486 69 431 13 487 477 23 75 425 0 500
4 27 473 85 415 28 472 482 18 106 394 0 500
5 25 475 80 420 25 475 472 28 107 393 0 500
6 23 477 84 416 26 474 480 20 95 405 0 500
7 61 439 86 414 62 438 482 18 168 331 0 500
8 49 451 65 435 53 447 483 17 187 313 0 500
9 50 450 89 411 55 445 483 17 155 344 0 500
10 14 486 38 462 24 476 348 152 143 357 0 500
11 25 475 53 447 25 475 358 142 149 351 0 500
12 44 456 66 434 47 453 367 133 175 325 0 500
13 61 439 67 433 51 449 355 145 199 301 0 500
14 65 435 93 407 68 432 402 98 204 296 0 500
15 95 405 128 372 93 407 409 91 203 297 0 500
16 118 382 120 380 123 377 438 62 247 253 0 500
17 158 342 150 350 149 351 447 53 243 257 0 500
18 183 317 190 310 179 321 435 65 238 262 0 500
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Figure 4: The 3-D surface and the contour of the desirability function (denoted by
“Des”) within the experimental region R in the case study of a chemical process: left:
3-D surface and right: contour
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Table 3: Numerical comparisons of GA, MGASD, MGA3, MGA4, and MGANR (de-
noted by “0, SD, 3, 4, NR,” respectively) in terms of the MSE of the response best and
the estimated MC error of the MSE under the 12 combinations (denoted by “Comb”)
of the factors type, crossover, and muation (denoted by “t, c, m,” respectively) for the
case study by stopping rule 1.

Comb MSE(best) MC error(MSE(best))
×10−3 ×10−3

t c m 0 SD 3 4 NR 0 SD 3 4 NR

.4 12.75 11.69 10.02 8.49 13.09 2.07 2.07 1.75 1.29 2.14
0 .5 7.82 7.21 7.07 6.64 8.04 0.86 0.79 0.68 0.62 0.95

0 .6 7.14 6.73 6.59 6.30 7.22 0.67 0.63 0.54 0.48 0.75
.4 8.99 9.05 8.23 7.94 10.42 1.27 1.47 1.39 1.37 1.87

1 .5 7.19 7.09 6.58 6.37 7.75 0.81 0.85 0.60 0.57 1.10
.6 6.75 6.50 6.50 6.34 6.91 0.63 0.59 0.57 0.56 0.67
.4 10.18 9.54 8.72 8.15 11.37 1.45 1.54 1.34 1.29 1.81

0 .5 8.25 7.95 7.22 6.79 8.94 0.96 1.26 0.71 0.65 1.38
1 .6 7.26 6.62 6.65 6.31 7.18 0.71 0.57 0.57 0.48 0.72

.4 8.93 9.56 6.91 6.76 10.20 1.43 1.70 0.73 0.70 1.75
1 .5 6.53 6.53 6.29 6.16 6.77 0.62 0.66 0.51 0.48 0.70

.6 6.14 6.13 5.95 5.86 6.38 0.51 0.52 0.41 0.40 0.57
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Table 4: Numerical six paired comparisons of GA, MGASD, MGA3, MGA4, and
MGANR (denoted by “0, SD, 3, 4, and NR,” respectively) in terms of the number
of winners among the 500 replications for each combination with respect to the re-
sponse best (denoted by “Count(best)”) for the case study by stopping rule 1. The
maximal MC error is 11.

Count(best)
0 SD 0 3 0 NR SD 3 3 4 SD NR

1 136 221 88 347 129 80 199 284 62 201 236 83
2 145 247 134 307 146 89 229 253 65 215 257 102
3 168 214 162 276 157 84 229 256 94 205 227 119
4 189 211 173 321 150 81 213 285 73 185 215 137
5 177 224 199 293 156 88 242 255 74 176 217 149
6 198 212 201 291 160 88 223 273 77 189 246 139
7 118 245 117 340 144 82 218 258 52 211 251 73
8 127 264 145 317 150 104 244 247 70 228 261 99
9 152 233 175 292 136 94 242 245 66 180 247 109
10 227 178 183 308 214 63 195 301 85 164 212 134
11 244 194 235 261 242 78 217 280 100 169 226 175
12 263 181 235 257 223 80 225 271 121 165 223 186
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Table 5: Summary on the GA/MGAs optimal settings (combinations) of the GA oper-
ations (type, crossover (denoted by “cross”), and mutation (by “muta”)) in all of our
examples.

Examples Number Stopping Optimal settings
(Functions) factors rules type cross muta Algorithms
Case study 2 1 tour 1 0.6 All

tour 1 0.4 GA
Sphere 1 — — — MGASD, MGA4, MGANR

model 2 tour 1 0.5 MGA3

“smooth” 2 tour 1 0.4 GA,MGA3

rank 1 0.4 MGASD, MGA4, MGANR

1 tour 3 0.1 All
Schwefel’s 5 2 rank 3 0.2 GA, MGA3

“bumpy” rank 2 0.2 MGASD, MGA4, MGANR

1 rank 8 0.05 GA, MGA3

20 tour 8 0.04 MGASD, MGA4, MGANR

2 rank 8 0.04 GA, MGA3

rank 4 0.05 MGASD, MGA4, MGANR

1 rank 3 0.2 GA, MGASD, MGA3, MGA4

5 — — — MGANR

2 rank 3 0.2 GA, MGASD, MGA3, MGA4

rank 3 0.1 MGANR

Rastrigin’s rank 8 0.05 GA
“very 1 — — — MGASD, MGA4, MGANR

bumpy” 20 rank 8 0.04 MGA3

rank 8 0.04 GA, MGA3

2 rank 4 0.05 MGASD, MGA4

rank 8 0.05 MGANR

—: Algorithm achieves the optimal solution, zero, in many combinations.
tour: tournament rank: ranking
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Figure 5: Surface of Schwefel’s function. Left: 1-dimension; right: 2-dimension.
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