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Multi-response optimization (MRO) in response surface methodology (RSM) is quite
common in applications. Before the optimization phase, appropriate fitted models for
each response are required. A common problem is model misspecification and occurs
when any of the models built for the responses are misspecified resulting in an erroneous
optimal solution. The model robust regression technique, a semiparametric method, has
been shown to be more robust to misspecification than either parametric or nonparamet-
ric methods. In this study, we propose the use of model robust regression to improve the
quality of model estimation and adapt its fits of each response to the desirability function
approach, one of the most popular MRO techniques. A case study and simulation stud-
ies are presented to illustrate the procedure and to compare the semiparametric method
with the parametric and nonparametric methods. The results show that model robust
regression performs much better than the other two methods in terms of model compar-
ison criteria in most situations during the modeling stage. In addition, the simulated
optimization results for model robust regression are more reliable during the optimization
stage.
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1 Introduction

Model misspecification is a common problem in many areas including multi-response
optimization (MRO) in response surface methodology (RSM). In industry and in many
other areas of science, data collected often contain m responses of interest for a single set
of explanatory variables, where the m > 1. An objective for the MRO problem is to find
an optimal setting or several feasible settings of the explanatory variables that provides
the best compromise for the multiple responses simultaneously. Before the optimization
is completed, m regression models must be obtained for each of the m response variables.

The MRO problem is illustrated by the minced fish quality example presented by1.
For this example, a central composite design (CCD) was conducted with three processing
factors (washing temperature, washing time, and washing ratio of water volume to sample
weight). The four response variables related to minced fish quality are springiness, thio-
barbituric acid number (TBA), cooking loss, and whiteness index. The goal of the study
is to determine the optimum combination of the levels of the three factors so that springi-
ness and whiteness index are maximized while TBA and cooking loss are minimized. This
example will be analyzed in greater detail in Section 5.
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If any of the m regression models are misspecified, the resulting estimates may be
biased and, consequently, an estimated optimal solution will likely be incorrect and sub-
optimal. A Bayesian method2 is to assess the effect of the uncertainty of the parameter
estimates for all the responses so that a solution obtained is robust to the uncertainty
in the form of the true models. But this method needs to assume that all the models
for each response are true and have the same form. The seemingly unrelated regression
(SUR) method where different responses can have different model forms may be useful
when response variables are highly correlated1. But SUR is not preferable in those cases
with a small sample size and/or with a low correlation among response variables because
in these situations the covariance matrix used by SUR will likely experience increased
sampling variability.

3 point out that traditional parametric methods are often inadequate and suggest the
use of nonparametric techniques. Unfortunately, in sparse data situations, which are typ-
ically the case with response surface experiments, nonparametric techniques often result
in highly variable estimates. The model robust regression (MRR) estimation method,
a semiparametric procedure, has been shown in4 to be more robust to misspecification
than either the parametric or nonparametric methods. MRR essentially combines the
advantages from the parametric and nonparametric methods and avoids their disadvan-
tages by simultaneously reducing both bias and variance of estimation. For the case of a
single response,5 has demonstrated that the MRR technique can be successfully applied
to model the mean response for data from designed experiments.

Once the model building stage is completed, where each regression model built for
each of the m responses variables is assumed to be appropriate, the optimization stage
starts. One of the most popular and formal approaches to MRO is to use some specific
function (an objective function) to combine the estimated responses so that the multiple
dimensional problem can be transformed into a one dimensional problem. Examples for
such specific functions are the desirability function by6, the generalized distance measure
function by7, and the weighted squared error loss function by8. In this study, we consider
only the desirability function method because it is easy to use and to interpret and readily
available on standard statistical software.

To deal with the model misspecification problem in the multivariate case, we propose
the use of MRR and adapt the MRR fits of each response to the desirability function
method. A case study and simulations studies illustrate that MRR performs much better
than the other two methods in most situations and its corresponding optimization results
are often more accurate.

Since the desirability function method is a highly nonlinear function, we have proposed
use of a genetic algorithm (GA), a global optimization tool, to help solve the MRO
problem.9 have developed a modified genetic algorithm (MGA) which has been shown to
be more computationally efficient than GA and is therefore used in this study to find an
optimal solution for the desirability function.

The remainder of this paper is organized as follows. Section 2 presents an overview
the traditional parametric and nonparametric modeling methods and Section 3 summa-
rizes the MRR technique, a semiparametric method. Bandwidth selection and mixing
parameter selection associated with MRR are also introduced in this section. Section 4
describes the adaptation of the MRR to the desirability function method. Sections 5 and
6 compare the optimization results for the three modeling methods through a case study
and simulation studies.
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2 An Overview of Parametric and Nonparametric

Approaches

Once the data are collected, our goal is to fit a model to estimate the true relationship
between the explanatory variables and each response.

For the multiple response problem, we may use multivariate regression techniques
(which are an extension of multiple linear regression for a single response) to model the
relationships between the explanatory variables and the multiple responses simultaneously.
However, in fact, the fits obtained by the regression techniques in the univariate case are
equivalent to the fits obtained by the multivariate regression techniques, including the
parametric10, nonparametric and semiparametric methods, as discussed in11. Therefore,
in this study, we model each response separately using the modeling techniques for a
single response.

For each of the m response variables, suppose the true relationship between the k

explanatory variables, x1i, x2i, ...xki, and the response, yi, i = 1, ..., n, is

yi = f(x1i, x2i, ..., xki) + εi, (1)

where the function f represents the true relationship, n is the sample size, and εi rep-
resents a random error term from the process assumed to be independent, identically
distributed, with mean zero and constant variance σi

2. Consequently, E(yi|x1i, ..., xki) =
µi = f(x1i, ..., xki) is the true mean response function. It should be noted that the func-
tion f may be a different function of the same k regressors for each of the m response
variables.

2.1 Parametric Approach

A parametric approach is to assume that the underlying mean response function can be
expressed parametrically. We will consider only the linear model written as

y = Xβ + ε (2)

where X is a n× q model matrix with q regressors possibly including a column of ones in
the model and β is a q × 1 vector of unknown parameters. The number of regressors, q,
q ≥ k, consists of k original variables (the “main effects”) and those functions of them,
such as quadratic and cross-product terms, that are deemed to be essential to the model.
Usually, the estimator of β can be obtained by the ordinary least squares (OLS) method
as β̂ = (X′X)−1X′y. Thus, the OLS fit at location x′

0 = (x10, x20, ..., xk0) is

ŷ
(OLS)
i =

^

x
′

0β̂ =
^

x
′

0(X
′X)

−1
X′y = h

(OLS)′

0 y, (3)

where
^
x
′

0 = (1, x10, ..., xk0, x(k+1)0, ..., x(q−1)0), h
(OLS)′

0 =
^
x
′

0(X
′X)−1X′, and X′ = [

^
x1, ...,

^
xn].

The OLS estimated fits can be further obtained as

ŷ(OLS) = Xβ̂ = X(X′X)
−1

X′y = H(OLS)y, (4)

where the n × n matrix H(OLS) is known as the “HAT” matrix. For more details on the
OLS and the HAT matrix, see12;13.

Certain optimal properties of the OLS estimator are achieved if the observed y’s are
independent with constant variances across all observations. On the other hand, suppose
the observed y’s are independent but with different variances. That is, cov(y) = cov(ε) =
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V = diag(σ2
1, ..., σ

2
n) 6= σ2I, where the V is a positive definite diagonal matrix. Then we

consider instead that the estimates for β may be obtained by the weighted least squares
(WLS) method as

β̂
(WLS)

= (X′V
−1

X)−1X′V
−1

y= (X′WX)−1X′Wy, (5)

where W = V−1 and the fitted value at x0 is given by

ŷ
(WLS)
0 =

^
x
′

0β̂
(WLS)

=
^
x
′

0(X
′WX)−1X′Wy (6)

The W in (5) and (6) essentially represents a “global” weight matrix since the weights are
unchanged cross all locations of x1, ..., xk. These global weights are different from “local”
weights, which change at different values of x0, arbitrary settings of x1, ..., xk, including
all values of xi, the observed settings of x1, ..., xk, i = 1, 2, ..., n. These “local” weights
will be discussed in next section.

2.2 Nonparametric Approach

If the parametric function in (2) is incorrect in practice, then the parametric approach
becomes inappropriate and a nonparametric approach may be an alternative choice.14

suggests the use of nonparametric RSM (NPRSM) in the following three scenarios: (i) the
main focus of the experiment is on optimization and not on parameter interpretation; (ii)
there is less interest in an interpretive function and more interest in the shape of a response
surface; or (iii) the functional form of the relationship between the explanatory variables
and the response is highly nonlinear and not well behaved.3;15;5 are some examples for
nonparametric applications in RSM.

Unlike parametric approaches, nonparametric regression approaches make no assump-
tions about the parametric relationship between variables. The form of f̂(x0) solely
depends on the data itself. There are several smoothness fitting techniques in the non-
parametric regression literature such as kernel regression (also called the Nadaraya-Watson
estimator), local polynomial regression (LPR), and spline-based regression. For details,
see16;17;18. LPR is a popular class of nonparametric smoothing techniques and is particu-
larly appealing in response surface applications due to its robustness to biased estimates
at the boundary of the design space.

LPR is designed to fit a polynomial locally with a distance-based weighting scheme.
Actually, similar to the parametric approaches which use the (global) weighted least
squares method to obtain (global) parameters and estimates, LPR uses the local weighted
least squares method16 to obtain local parameters and estimates. The local polynomial
may be zeroth-order (kernel regression), 1st- or higher-order. In our study, we focus on
the 1st-order polynomial, which is commonly referred to the local linear regression (LLR).

The LLR fit at x′

0 = (x10, x20, ..., xk0) is given by

ŷ
(LLR)
0 = x̃′

0(X̃
′W0X̃)

−1
X̃′W0y = h

(LLR)′

0 y, (7)

where the local weight matrix W0 = diag(h
(KER)
01 , · · · , h

(KER)
0n ), h

(KER)
0i = K(x0,xi)

n
∑

i=1

K(x0,xi)
is

a kernel weight associated with the distance of x′

i to x′

0, x̃′

0 = (1 x10 ... xk0) = (1,x′

0).
K(x0,xi) is the kernel function, and the LLR model matrix, X̃, is defined as X̃′ = [x̃1, x̃2, ..., x̃n],
x̃′

i = (1 x1i ... xki). We use the so-called Gaussian kernel function in this work, K(x0,xi),
given by

K(x0,xi) ∝ K

(
∥

∥

∥

∥

x0 − xi

b

∥

∥

∥

∥

)

or
k
∏

j=1

K
(x0j−xij

b

)

, (8)
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where K
(x0j−xij

b

)

= e
−

(

x0j−xij

b

)2

, j = 1, ..., k. b is is a specific bandwidth, also called the
smoothing parameter, utilized to determine the smoothness of the estimates. The choice
of the bandwidth is critical and will be discussed later. For details on the types of kernel
functions and the multivariate kernel function, see16;19;5.

The LLR fit in (7) is written in WLS format, except that the weight matrix is local-
ized as it changes with each value of x0, unlike the global weight matrix W in (5) that
is unchanged across all locations. In matrix notation, the LLR estimated fits may be
expressed as

ŷ(LLR) = H(LLR)y, (9)

where H(LLR), known as the LLR HAT matrix (or smoother matrix), is given by

H(LLR) =











h
(LLR)′
1

h
(LLR)′
2

...

h
(LLR)′
n











, (10)

where h
(LLR)′
i = x̃′

i(X̃
′WiX̃)

−1

X̃′Wi. It is easy to see from the formula above the esti-
mate of mean response at any location, either x′

i (an observed data location) or x′

0 (an
unobserved data location) is associated with its special weight matrix, due to the local
weighting scheme. The trace of H(LLR) provides the model degrees of freedom for the
LLR fit18.

2.3 Parametric vs. Nonparametric

As mentioned earlier, both parametric and nonparametric methods have shortcomings.
Parametric methods are inflexible in that a parametric function must be specified before
fitting and if this model is incorrect, the resulting fits are subject to the consequence
of model misspecification error such as bias in estimated mean response. Nonparamet-
ric methods are too flexible in that the resulting estimates of mean response completely
depend on the observed data itself and often these fits are subject to high variance. In ad-
dition, the successful application of the nonparametric approach has usually been limited
to fairly large sample sizes and space-filling designs. However, the typical characteris-
tics of traditional RSM experiments, such as small sample size, sparse data, and most of
design points on the edge of design space, all restrict the application of nonparametric
approach.

3 A Semiparametric Approach

Semiparametric approaches combine a parametric method with a nonparametric method.
One semiparametric method, model robust regression (MRR), proposed by4, was origi-
nally developed for situations when there is partial knowledge about the underlying model,
a situation very common in real life. Unlike the nonparametric method, MRR does not
require a large sample and tends to work very well when the sample size is small4;20;5. It
has been shown that MRR can improve estimates of mean response by combining both
the parametric and nonparametric estimates into one estimate, simultaneously reducing
both bias and variance of estimation. MRR essentially combines the advantages from
the parametric and nonparametric methods and avoids their disadvantages.5 has demon-
strated that the MRR technique can be successfully applied to model mean response for
data from designed experiments for the case of a single response.
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MRR combines the parametric fit to the raw data with a nonparametric fit to the
residuals from the parametric fit via a mixing parameter, λ. In this study, our MRR
combines the parametric fit by the OLS method with the nonparametric fit by the LLR
method. However, the MRR approach allows one to specify any other type of parametric
and nonparametric methods for some special situations and conditions.

Our MRR fit at x0 is given by

ŷ
(MRR)
0 =

^
x
′

0(X
′X)

−1
X′y + λx̃′

0(X̃
′Wr0X̃)

−1
X̃′Wr0r = h

(OLS)′

0 y + λh
(LLR)′

r0 r, (11)

where λ ∈ [0, 1], r = y − ŷ(OLS), h
(LLR)′

r0 = x̃′

0(X̃
′Wr0X̃)

−1
X̃′Wr0, and Wr0, similar to

W0 in (7), is a diagonal weight matrix for the residuals r at x0. In terms of HAT matrices,
the equation above may be expressed as

ŷ(MRR) = H(OLS)y + λH(LLR)
r r =

[

H(OLS) + λH(LLR)
r (I − H(OLS))

]

y = H(MRR)y, (12)

where H
(LLR)
r is the LLR HAT matrix for fitting the residuals r from the parametric fits

ŷ(OLS) using the LLR method. The trace of H(MRR), the MRR hat matrix, is the model
degrees of freedom for the MRR fit.

As shown in (11) and (12) and as stated in4, the amount of misspecification of the
parametric model, and the amount of correction needed from the residual fit, is reflected
in the size of λ. The philosophy of MRR is that the user, having examined the data and
with subject matter knowledge, proposes their best parametric model. Any structure in
the data not captured by the user’s model is contained in the residuals. A nonparametric
fit to these residuals describes this remaining structure. The nonparametric fit, however,
may be following these residuals a bit too closely, fitting error variability along with the
remaining model structure. The λ parameter is needed to dampen the impact of the extra
variability in the nonparametric fit to the residuals.

If the parametric fit is adequate, then λ should be chosen close to zero by some appro-
priate λ selector (which will be discussed later). On the other hand, if the parametric fit
is inadequate, then λ will be chosen large enough (close to one) so that the nonparametric
fit to the OLS residuals can be used to make up for the parametric fit’s inadequacy. In
practical applications, the user does not know the true underlying function and, conse-
quently, does not know the amount of model misspecification. Thus, the MRR method
provides an alternative estimation procedure that is robust to the model misspecification
that may be present in the user’s proposed model and to the high variability that may be
present in a nonparametric method.

3.1 Choice of the Smoothing Parameter b

As in all kernel-based nonparametric methods, MRR requires the selection of the smooth-
ing parameter b to be used by the method when fitting the residuals from the parametric
model. In this study, since LLR will be used as the nonparametric method or as part of
the semiparametric method to fit the residuals, the following discussion on the choice of
the bandwidth will be related to LLR using y as the response values. It is easy to extend
the data-driven method for the choice of bandwidth to the nonparametric part of MRR
by considering residuals as response values.

The choice of bandwidth is crucial in obtaining a “proper” estimate of function f .
Any suitable criterion to deal with the trade-off between bias and variance such as the
mean squared error (MSE) may be used here to select an appropriate bandwidth. For a
thorough discussion of bandwidth selectors, see16;21. There are several bandwidth selectors
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such as MSE, PRESS (prediction error sum of squares), PRESS* (a modified PRESS
with an adjustment in its denominator), PRESS** (another modified PRESS with two
adjustments in its denominator), the generalized cross-validation (GCV) and Akaike’s
Information criterion (AIC). Among them, PRESS** has been shown in22;20 to be the
best choice in terms of minimizing integrated mean squared error of fit across a broad
variety of data scenarios (including some used in our simulation study). Consequently,
we use PRESS** as a bandwidth selector in this study.

The PRESS** is given by

PRESS∗∗(b) =

∑

(y − ŷi,−i(b))
2

n − trace(H(LLR)(b)) + (n − k − 1)SSEmax−SSEb

SSEmax

=
PRESS(b)

n − trace(H(LLR)(b)) + (n − k − 1)SSEmax−SSEb

SSEmax

, (13)

where SSEmax is the largest error sum of squares over all possible bandwidth values
(essentially, SSEmax is the parametric SSE by OLS that results when b tends to infinity)
and SSEb is the error sum of squares associated with a specific bandwidth value b.

3.2 Choice of the Mixing Parameter λ in MRR

As the sample size n goes to infinity, the estimated asymptotically optimal value (see4)
of the mixing parameter for MRR is given by

λ̂ =

〈

r̂(LLR),y − ŷ(OLS)
〉

‖r̂(LLR)‖
2 , (14)

where 〈〉 represents the inner product and ‖‖ represents the standard L2 (Euclidean)
norm. The examples in4 show that this method works well for small sample sizes.

4 Desirability Function Method with Modeling Tech-

niques

After the model building stage is completed where each regression model built for each re-
sponse is assumed to be appropriate, the MRO techniques can then be used. As mentioned
in the introduction, in this study, the desirability function method, one of the most pop-
ular multi-response optimization techniques, is used to find the best compromise among
the multiple responses simultaneously.

The desirability function method, proposed by6, transforms each response into an
individual desirability value through a desirability function and then combines these indi-
vidual desirabilities into one desirability value using a geometric mean. The desirability
function (considered here as an objective function utilized for optimization) at location
x0 is given by

D(x0) = [d1(ŷ1(x0)) × d2(ŷ2(x0)) × · · · × dM(ŷM(x0))]
1/M × 100%, (15)

where M is the number of response variables, m = 1, ..., M , and dm()6 is the mth individual
desirability function and transforms the predicted value for the mth response at x0, ŷm(x0),
into a dimensionless individual desirability value, scaled within [0, 1]. Obviously, the
range of D is [0, 1]. The individual desirability function is a discrete function with some
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pre-specified parameters, such as L (the lower limit), U (the upper limit), and T (the
target value). The individual desirability functions are presented in the appendix. For
more details about the use of the desirability function and their parameters, see6;23. The
predicted value for the mth response, ŷm, could be obtained from either a parametric,
nonparametric or semiparametric fit. The goal of the method is to find the maximum of
the overall desirability D and its associated optimal location(s).

A case study and a simulation study are used to compare MRR fits with OLS and
LLR fits during the modeling stage. Then, these resulting fits are compared during the
optimization stage using the desirability function. A modified genetic algorithm9 is used
to find an optimal solution for the desirability function under the three different modeling
methods.

To compare the three modeling methods, some numerical criteria are utilized: 1)
DFerror, the degree of freedom of error, is given by DFerror = n− tr(H)18; 2) s2, estimate
of error variance; 3) R2, coefficient of determination; 4) R2

adj , adjusted R2; 5) PRESS**
(using (13) with estimated bandwidth for LLR and with estimated bandwidth and lambda
for MRR). Criteria 1-4 focus on describing how well a model is fit by the observed data,
while Criteria 5 focus on describing the prediction capability associated with the fitted
model. Criteria 2-4 are standard criteria for comparing models12. The DFerror can be
used to compute the degrees of freedom for the model as DFmodel = DFtotal − DFerror.
DFmodel represents the complexity of the model. DFtotal is the total number of degrees of
freedom, equal to n, the sample size.

5 The Minced Fish Quality Example

To illustrate our method, we return to the minced fish quality example presented in the
Introduction. A CCD was conducted with a total of 17 design points, including 23 runs
in the factorial region, augmented with six axial runs, and three center runs.

1 use the second-order polynomial parametric method to model each response to obtain
the optimal fitted value ŷi(x) at location x, for i = 1, 2, 3, 4. The final fitted second-order
models for the four responses by OLS are given in1. For the responses y1 and y4, the final
fitted models include three terms: intercept, x1 and x2

1. The final model for the response
y2 includes five terms: intercept, x1, x2, x2

1 and x12. The model for y3 has a total of
eight terms, including intercept, x1, x2, x3, x2

1, x12, x13, and x2
3. The natural independent

variables are transformed into the coded variables within the range of [0, 1]. For each
response, the design spaces we use for the LLR and the nonparametric part of the MRR
are the same as the ones used for the OLS by1.

5.1 Results on Model Comparisons

During the modeling stage, Table 1 shows the numerical results for model comparisons of
OLS, LLR, and MRR for all the responses respectively with respect to the five criteria as
previously mentioned. Table 1 shows that MRR has smaller, often substantially smaller,
s2 than OLS and LLR across all of the four responses. Table 1 shows that MRR has
smaller, often substantially smaller, s2 and larger, often substantially larger, R2

adj than
OLS and LLR across all of the four responses. MRR has larger R2 than OLS and LLR in
three of the four responses. MRR has smaller PRESS** than OLS and LLR in three of
the four cases. Furthermore, in the case where MRR does not perform the best among the
three modeling techniques, MRR still is very competitive to the best modeling technique
in terms of all the five criteria.
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As can be seen from Table 1, the models obtained by OLS use fewer model degrees
of freedom than the MRR method. It should be pointed out, however, that the OLS
results cannot be improved by adding other first and second order terms. The OLS model
is clearly misspecified but this misspecification cannot be captured by using lower order
polynomial terms. MRR has improved the OLS fits by utilizing all of the unspecified
model structure found by LLR in the OLS residuals.

It also should be noted that using LLR on the raw data results in very poor fits to
several of the responses, indicating the difficulty of a nonparametric method in fitting
sparse data.

[Table 1 here]

5.2 Optimization Results

During the optimization stage, the desirability function method is used to obtain the
best compromise of the four responses. In the individual desirability function, the pre-
specified parameters (see the appendix for the parameters of the desirable function) are
set as follows. The maximum (or minimum) of the observed data is used as the T value
for each response since they are not available in1. That is, in this example, T1 = 1.92,
T2 = 20.16, T3 = 16.80, and T4 = 50.98. The limited boundaries for each response are
L1 = 1.7, U2 = 21, U3 = 20, and L4 = 45, for y1 through y4, respectively. The weights r,
r1, or r2 are all 1.0 in this case study, since no priorities are given in1.

Since a CCD was utilized in the example, the solution vector xs shall be constrained
to be within the experimental region R, a hyper-circle in this 3-dimensional example. As
mentioned previously, the natural independent variables are transformed into the coded
variables within the range of [0, 1]. Therefore, the solution vector xs is defined as (x1 −
0.5)2 + (x2 − 0.5)2 + (x3 − 0.5)2 ≤ 0.52 in the transformed experimental region.

As mentioned earlier,1 use the second-order polynomial to parametrically model each
response to obtain the optimal fitted value ŷi(x) at location x, for i = 1, 2, 3, 4. The final
fitted models are given in1 as well as the location where the simultaneous optimal solution
is found. Based on the location they found using Design-Expert, the corresponding fitted
values for the four responses are re-calculated by us as well as the desirability value D
and given as follows.

The OLS solution: x1 = 0.3514 x2 = 0.7973 x3 = 0.7319
ŷ1 = 1.9074 ŷ2 = 20.2910 ŷ3 = 17.6381 ŷ4 = 49.8346 D = 0.8301

We use the MGA to find the optimization solutions by the three different modeling
techniques. The parametric models we used for each response are exactly the same as the
models in1. The solutions we find by the OLS, LLR and MRR methods are as follows.

The OLS solution: x1 = 0.3857 x2 = 0.9693 x3 = 0.6784
ŷ1 = 1.9067 ŷ2 = 19.7378 ŷ3 = 17.3903 ŷ4 = 50.4668 D = 0.9149

The MRR solution: x1 = 0.3379 x2 = 0.9422 x3 = 0.7080
ŷ1 = 1.8947 ŷ2 = 19.5246 ŷ3 = 17.7507 ŷ4 = 51.3969 D = 0.8880

We do not show the LLR solution, because the desirability function value D = 0 since
the LLR fits can be highly inadequate.

It is easy to see that our OLS solution found by the MGA is better than the OLS
solution found by Design-Expert in1. The OLS solution should not be compared to the
MRR solution, because the OLS solution has been shown in Table 1 to be misspecified.
Consequently, the MRR solution should be viewed as more reliable than the OLS solution,

9



because the MRR method provides a superior fit to the data than the OLS method in
terms of our model comparison criteria.

6 Simulation Studies

In this section, the MRO problem is simulated and the three methods compared via Monte
Carlo methods.

6.1 The MRO Goals and Simulation Process

To simulate the MRO problem, a CCD design with two factors and two responses are
simulated using two true underlying response functions. The CCD contains a total of 13
design points, including four axial runs and five center runs for each simulated data set.
A similar design is used in the chemical process example in23.

Each Monte Carlo simulation is based on the following two underlying models:

y1i = µ1(xi) + ε1i

= 66 + 22x1i+10x2i+13x1ix2i−23x2
1i−25x2

2i

+ γ[−2sin(3πxi1) − 2cos(3πx2i) + 2sin(2πx1ix2i)]+ε1i, (16)

y2i = µ2(xi) + ε2i

= 70 − 15x1i−10x2i−14x1ix2i+15x2
1i+25x2

2i

+γ[2sin(3πx1i) − 2cos(3πx2i) + 2sin(3πx1ix2i)]+ε2i. (17)

where µ1(.) and µ2(.) are the true mean functions of y1 and y2, respectively, xi = (x1i, x2i)
′

is the ith design point, the two error terms, (ε1i, ε2i), are independent normally distributed
random variables with means of zero and variances of one, i = 1, ..., n, with n = 13. In
both models (16) and (17), γ represents the model misspecification parameter. That is,
the user’s models are represented by the second-order polynomial model with γ = 0. As
the value of γ increases, the amount of misspecification increases in the models. Five
degrees of model misspecification are studied (γ = 0.00, 0.25, 0.5, 0.75, and 1.00), where
γ = 0 represents a correctly specific model. According to these five levels of γ, there are
five Monte Carlo simulations respectively, in each of which 500 simulated data sets are
generated.

Figure 1 shows the surfaces of the true mean function of the response y1 when γ =
0.00, 0.25, 0.50, 0.75, and 1.00, respectively. Similarly, Figure 2 shows the surfaces of
the true mean function of the response y2. Both figures show that as γ increases, the
curvatures of the surfaces becomes more pronounced indicating the increasing nature of
the model misspecification in the user’s quadratic model.

[Figure 1 here]

[Figure 2 here]

Two MRO goals are used for each Monte Carlo simulation. Goal 1 is to maximize
y1 and minimize y2 simultaneously. Goal 2 is to achieve target values for y1 and y2

simultaneously. Each goal is solved by the desirability function method with the pre-
specified parameters values for T, L, and U (as defined in the Appendix). In Goal 1, we
choose T1 = 83 and L1 = 65 for y1, and T2 = 58 and U2 = 75 for y2, while in Goal 2, we
choose T1 = 60, L1 = 55, and U1 = 65 for y1 and T2 = 75, L2 = 70, and U2 = 80 for y2.
All these parameters are fixed across all levels of γ.
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6.2 Simulation Criterion During The Modeling Stage

After completion of the data generation stage, the modeling stage begins using the OLS,
LLR and MRR methods respectively to model the two responses. Similar to the univariate
case in5, for each simulation, we compare the MRR method with the OLS and LLR
methods in terms of simulated integrated mean squared error (SIMSE). The SIMSE in
the multivariate case is given by:

SIMSE =

∑

ASE

500
, (18)

where

ASE =

s
∑

l=1

(µ(xl) − ŷ(xl))
′(µ(xl) − ŷ(xl))

s
, (19)

where ASE denotes the average squared error for the estimates from the true mean func-
tions for each of the 500 simulated data sets, µ(xl) = (µ1(xl), µ2(xl))

′ is the true mean
functions of y1 and y2 at location xl = (x1l, x2l)

′, ŷ(xl) = (ŷ1(xl), ŷ2(xl))
′ is the fits at

xl by OLS, LLR, or MRR, l = 1, ..., s, and s is the number of locations within the ex-
perimental space used for prediction based on the 41 × 41 uniform grid of points. Those
points outside of the experimental space are excluded. In this study, s = 1257. SIMSE, a
measure we want to be as small as possible, provides an indication of the fit performance
of each of the three methods over the entire design space.

6.3 Simulation Results During The Modeling Stage

Table 2 provides a comparison of the OLS, LLR, and MRR based on the SIMSE values for
the varying degrees of model misspecification in the simulations based on the CCD. For
the scenario in which the researchers correctly specify the form of the underlying models
(i.e., γ = 0.00), we would expect the parametric approach to be superior. The first row
of Table 2 shows that OLS has the mininum SIMSE, MRR is a close second, while LLR
provides an inferior fit.

[Table 2 here]

The remaining rows of Table 2 provide the SIMSE values for the scenario in which the
researchers misspecify the models (i.e., γ > 0). As expected, MRR performs better than
OLS and LLR with smaller SIMSE values through each non-zero degree of misspecifica-
tion.

Table 2 also includes the Monte Carlo errors of the SIMSE values. Tukey’s multiple
comparison method is used to determine significant differences among the three methods
at the overall type I error rate of 0.05. When γ = 0.00 and 0.25, there are no significant
differences between OLS and MRR. When γ = 0.50, 0.75 and 1.00, MRR is significantly
smaller than OLS. In addition, LLR is significantly larger than OLS and MRR through
all of the five degrees of model misspecification.

As mentioned in (18), each SIMSE value which indicates a simulated integrated mean
squared error for the estimates from the true mean functions for each of the 500 simu-
lated data sets accounts for both bias and variance. A small SIMSE value means that
both bias and variance of estimation are small. Thus, the SIMSE results along with the
Monte Carlo errors, as shown in Table 2, suggest that the semiparametric approach is
highly competitive to the parametric approach when no model misspecification occurs,
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and can be superior to both the parametric and nonparametric approaches, simultane-
ously reducing both bias and variance of estimation, when there exists some moderate
model misspecification.

6.4 Simulation Criteria During The Optimization Stage

After completion of the modeling stage, the optimization stage begins using the desirabil-
ity function approach to find an optimal solution. In practice, the optimization stage is
concerned with finding a location where both responses are simultaneously close to their
respective optimal values. This may be a location different for where each response is
individually optimal. Therefore, there are two criteria used to compare the three meth-
ods, both of which are related to an optimal location found by our MGA through the
desirability function for each simulated data set.

For each Monte Carlo simulation, the three methods are compared in terms of the
average squared error loss (ASEL) from the true target response values. The ASEL is
given by

ASEL =

q=500
∑

q=1

(µ(x∗

q) − T)′(µ(x∗

q)−T)

500
, (20)

where µ(x∗

q) is a 2×1 vector of the values of the true mean function at an optimal location
x∗

q , the location x∗

q = (x∗

1q, x
∗

2q)
′ is obtained by MGA through the desirability function for

the qth simulated data set, q = 1, ..., 500, and T is a 2 × 1 vector of the target values
for the responses. For Goal 1, as previously mentioned, T = (83, 58)′, and for Goal 2,
T = (60, 75)′.

For each Monte Carlo simulation, the three methods also are compared in terms of
average desirability function (AD), which is given by

AD =

500
∑

q=1

Dq

500
, (21)

where
Dq = (d1(x

∗

q)d2(x
∗

q))
1/2, (22)

and similar to (20), x∗

q is an optimal location obtained by our MGA through the desir-
ability function for the qth simulated data set, d1 and d2 are individual desirabilities for y1

and y2, respectively. Essentially, both ASEL and AD measure the performance of the lo-
cations chosen by each modeling method. We measure with ASEL the average Euclidean
distance of the mean response vector from the target vector at the chosen locations for
each method. And, with AD we measure the average desirability of the chosen functions.
Of course, we prefer a method with a small value of ASEL and a large value of AD.

Graphs of the desirability functions, using the two true mean functions shown in (16)
and (17), with the different levels of γ, have been obtained but not presented here due to
limited space. All the figures show that the surfaces have only a single optimal solution
for each level of γ.

6.5 Simulation Results During The Optimization Stage

Table 3 provides a comparison of OLS, LLR, and MRR in terms of the ASEL and AD
values for the varying degrees of model misspecification for Goal 1 in the simulations based
on CCD during the optimization stage, followed by the estimated Monte Carlo errors of
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ASEL and AD in parentheses, respectively. When γ = 0.00 or 0.25, OLS has the smallest
ASEL values and the largest AD values. When γ is 0.50 or 0.75, MRR has the smallest
ASEL values and the largest AD values. At γ equal to 1.00, LLR has the smallest and
largest values of ASEL and AD, respectively.

Tukey’s multiple comparison method is used to determine significant differences among
the three methods at the overall type I error rate of 0.05. When γ = 0.00, 0.25, and 0.50,
there are no significant differences between OLS and MRR, and LLR is significantly
smaller than OLS and MRR in ASEL and significantly larger than OLS and MRR in AD.
When γ = 0.75, there are no significant differences among the three methods in ASEL
and MRR is significantly smaller than the other two in AD. When γ = 1.0, the three
methods are significantly different from each other in both ASEL and AD.

[Table 3 here]

As seen from Tables 2 and 3, those methods with the smallest values of SIMSE from the
fitting stage tend to have the smallest values of ASEL and the largest values of AD from
the optimization stage. It is also observed that in those cases where the SIMSE values
for a particular method are very poor, for example, the LLR results when γ = 0.00, that
the ASEL and AD results for that method are very competitive with the best methods.
Justification for this phenomenon is provided by plots (not shown here) of the estimated
mean functions obtained by OLS, LLR, and MRR for y1 and y2 across various values of
x1 and x2. When compared to the true mean functions, these plots indicate that despite
the relatively poor fit by LLR, the locations where the maximum occurs for y1 and the
minimum for y2 are very close to the appropriate locations for the OLS and MRR fits,
resulting in relatively small ASEL and large AD values.

Similar to Table 3, Table 4 provides a comparison of the three modeling methods in
terms of the ASEL and AD values for the varying degrees of model misspecification for
Goal 2, followed by the Monte Carlo errors of ASEL and AD in parentheses, respectively.
When γ = 0.00, LLR performs better than OLS and MRR since it has the smallest ASEL
value and the biggest AD value. But LLR only performs slightly better, since actually, all
of the three methods have nearly equal values of ASEL and AD. When γ > 0.00, however,
MRR performs better than the other two, since it has smaller ASEL values and bigger
AD values.

[Table 4 here]

Tukey’s multiple comparison method reveals that at γ = 0.00, there are no significant
differences among the three methods. When γ = 0.25, MRR and LLR are significantly
better than OLS in ASEL. When γ = 0.50, 075, and 1.0, MRR is significantly better than
OLS and LLR in both ASEL and AD.

For both Goals 1 and 2, as shown in Tables 3 and 4, the optimization results by
the semiparametric fit are highly competitive to the results by the other two methods
when there is no or low model misspecification, and superior or highly competitive to the
results for higher levels of misspecification. Thus, we can conclude that the optimization
results by the semiparametric approach are more reliable than the ones by the parametric
and nonparametric approaches, in general, at least for the situations examined in our
simulation.
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7 Conclusion and Discussion

RSM has utilized parametric regression techniques to study products and processes since
its inception. One drawback, however, is that optimization depends too heavily on the
assumption of well-estimated models for the responses of interest, and it is often the case
that the user’s specified parametric models are not flexible enough to adequately model
the process. Nonparametric smoothing has been considered when the user is unable to
specify the explicit form for the underlying function. However, in small sample settings,
which are customary for response surface experiments, the nonparametric approach often
produces estimates that are highly variable. Therefore, we suggest MRR, a semipara-
metric approach, which combines a parametric method with a nonparametric method.
MRR combines the advantages from both the parametric and nonparametric methods
and reduces some of their disadvantages (high bias mainly from the parametric method,
and large variance mainly from the nonparametric method).

In the minced fish quality example of the MRO problem, the results show that MRR
is superior to OLS and LLR in terms of the five model comparison criteria through all of
the responses. During the optimization stage, the models by the OLS, LLR, and MRR
are assumed to be correct respectively, and the desirability function method has been
utilized to find the optimal solutions with the best compromise among the responses.
Although the optimal solutions by the three modeling methods are incomparable directly,
the optimization results by MRR is more reliable, because the MRR model appears to
have less misspecification (i.e., both lower bias and variances) than either the parametric
and nonparametric methods based on the model comparison results.

Simulation studies based on a CCD with different degrees of model misspecification
were conducted to compare the three approaches more generally. If the user correctly
specifies the model for each response of interest, the parametric approach yields the best
fit in terms of SIMSE and its corresponding optimization results are the best for Goal
1 and highly competitive to the results by the other methods for Goal 2 in terms of
ASEL and AD. If there exists some moderate model misspecification, the semiparametric
approach always yields the best fit in terms of SIMSE and its corresponding optimization
results are superior or highly competitive to the ones by the other two methods for Goal
1, and are always the best for Goal 2. Thus, we can conclude that the semiparametric
approach consistently performs well in general and has less misspecification in terms of
SIMSE and its corresponding optimization results are more reliable than the other two.

Since, in practice, one never knows if the form of the underlying model for each
response of interest has been correctly specified, we advocate MRR as it is the only
method among those considered in this paper which consistently performs well over all
degrees of potential misspecification and its corresponding optimization results are more
reliable. Although MRR is slightly more complex than OLS, R code, available from
authors, is easily implemented and greatly reduces the complexity.

The philosophy of MRR is that if the user’s model is a very good descriptor of the
data, λ̂ will be close to zero, indicating that the nonparametric component contributes
little toward improving the parametric fit. If the user’s model is a very poor descriptor
of the data, then λ̂ will be close to one. This indicates that the MRR fit is substantially
improved by using the nonparametric component.

The real benefit of MRR occurs when the user’s model provides an adequate, but not
wholly satisfactory fit to the some regions of the data. In this case, λ̂ will be somewhere
in the middle between zero and one and the fits obtained via MRR can be far superior to
the fits obtained by either the parametric or the nonparametric method.

Of course, if λ̂ is close to one, nothing prevents the user from adjusting the parametric
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model, perhaps by adding higher order terms or by changing the model in some other
appropriate way, and recalculating the MRR fit. If the new parametric model is an
improvement, the new MRR fit will also be an improvement. Should λ̂ now be close to
zero, the fit from the revised parametric model may be chosen as the final fit. Thus, MRR
may be used as an exploratory tool as part of the model building process.

Consequently, as a strategy for using MRR, it is recommended that the user build the
parametric component of MRR by using the best regression modeling techniques known
to them. MRR can then be used to improve an adequate but not wholly satisfactory
parametric model fit or to help confirm a reasonable parametric model.

Several issues remain for further study. Procedures that work well when data are
dense and uniformly spaced over the design region may need adjustment for the RSM
problem where the design points are sparse with most of the design points on the edge of
the design space and where the sample size is small. Examples include; 1) the selection of
various parameters for the nonparametric methods (bandwidth selection for kernel-based
methods or knot selection for penalized-spline methods); 2) the adjustment of the para-
metric and nonparametric methods for dealing with outliers in the response variables; 3)
adjustment of standard RSM designs, appropriate of correctly specified parametric mod-
els, but unlikely appropriate for use with misspecified parametric models nor appropriate
in most cases for use with nonparametric regression and, consequently, with MRR.
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APPENDIX: Individual Desirability

The following details concern the individual desirability functions and their parame-
ters.

As mentioned previously, ŷi(x) is needed to transform into a dimensionless individual
desirability, di, in the desirability function. There are two cases for transformation to
consider: one-sided and two-sided transformations. One-sided transformations are used
when the goal is to either maximize the response or minimize the response. Two-sided
transformations are used when the goal is for the response to achieve some specified target
value. When the goal is to maximize the ith response, the individual desirability is given
by the one-sided transformation

di =











0 ŷi(x) < L
[

ŷi(x)−L
T−L

]r

L ≤ ŷi(x) ≤ T

1 ŷi(x) > T

, (23)

where T represents an acceptable maximum value, L represents the acceptable minimum
value and r is known as a ”weight”, specified by the user. Similarly, when the goal is
to minimize the ith response, the corresponding individual desirability is written as the
one-sided transformation

di =











1 ŷi(x) < T
[

U−ŷi(x)
U−T

]r

T ≤ ŷi(x) ≤ U

0 ŷi(x) > U

, (24)
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where T is an acceptable minimum value and U is the acceptable maximum value. When
the goal is to obtain a target value, the individual desirability is given by the two-sided
transformation

di =























0 ŷi(x) < L
[

ŷi(x)−L
T−L

]r1

L ≤ ŷi(x) ≤ T
[

U−ŷi(x)
U−T

]r2

T ≤ ŷi(x) ≤ U

0 ŷi(x) > U

, (25)

where T is the target value, and L and U are the acceptable minimum and maximum
values respectively, and r1 and r2 are weights, specified by the users.

This desirability function D offers the user great flexibility in the setting of the desir-
abilities due to allowing users to chose appropriate values of L, U, and T, and of r, r1,
and r2, for their different specific situations. For more details on the desirability function,
see, for example, Derringer and Suich (1980) and Myers and Montgomery (2002).

Table 1: Results on model comparisons of OLS, LLR, and MRR with two different meth-
ods for λ selection for all the responses in the minced fish quality example. Best values
in bold.

b λ̂ DFerror s2 R2 R2
adj PRESS**

OLS — — 14.000 1.653E-03 0.9211 0.9099 0.0042
y1 LLR 0.146 — 12.138 1.039E-03 0.9570 0.9433 0.0026

MRR 0.170 1 12.268 1.033E-03 0.9568 0.9436 0.0025
OLS — — 12.000 7.5417 0.9341 0.9122 19.5097
LLR 0.436 — 11.212 21.8508 0.8217 0.7456 36.4222

y2 MRR 0.277 1 8.940 4.8253 0.9686 0.9438 19.6311
OLS — — 9.000 4.5641 0.8408 0.7170 20.2719

y3 LLR 0.537 — 8.373 9.7990 0.6821 0.3925 17.0554
MRR 0.542 1 6.596 2.9031 0.9258 0.8200 13.1264
OLS — — 14.000 14.2182 0.5407 0.4751 48.9101

y4 LLR 0.120 — 12.031 1.0197 0.9717 0.9624 17.1484
MRR 0.119 1 12.029 1.0158 0.9718 0.9625 18.6472

Table 2: Simulated integrated mean squared error (SIMSE) values by OLS, LLR, and
MRR in the simulations based on CCD and the estimated Monte Carlo (MC) error of
SIMSE. Best values in bold.

SIMSE MC error(SIMSE)
γ OLS LLR MRR OLS LLR MRR

0.00 0.6330 5.2171 0.6720 0.0120 0.0491 0.0123
0.25 1.4435 5.6521 1.4161 0.0181 0.0472 0.0184
0.50 3.8424 7.4220 3.4809 0.0293 0.0482 0.0302
0.75 7.8296 10.2053 6.8348 0.0417 0.0551 0.0430
1.00 13.4051 14.0769 11.5172 0.0545 0.0578 0.0558
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Table 3: Average squared error loss (ASEL) and averaged desirability function (AD)
values by OLS, LLR, and MRRλ2 for Goal 1 in the simulations based on CCD, followed
by the estimated Monte Carlo errors of ASEL and AD in parentheses, respectively. (The
estimated Monte Carlo errors of AD are in ×10−4.) Best values in bold.

ASEL AD
γ OLS LLR MRR OLS LLR MRR

0.00 105.3(0.035) 109.8(0.470) 105.4(0.042) 0.595(0.67) 0.587(8.4) 0.595(0.79)
0.25 90.7 (0.074) 95.0(0.270) 90.8(0.095) 0.619(1.5) 0.610(5.3) 0.619(1.8)
0.50 78.5(0.089) 82.9(0.249) 78.3(0.148) 0.642(1.9) 0.632(5.4) 0.643(3.0)
0.75 69.4(0.092) 69.4(0.263) 68.8(0.164) 0.663(2.3) 0.663(6.2) 0.664(3.8)
1.00 63.7(0.100) 57.3(0.111) 63.0(0.137) 0.681(2.6) 0.695(2.5) 0.684(3.9)

Table 4: ASEL and AD values by OLS, LLR, and MRR for Goal 2 in the simulations
based on CCD, followed by the Monte Carlo errors of ASEL and AD in parentheses,
respectively. Best values in bold.

ASEL AD
γ OLS LLR MRR OLS LLR MRR

0.00 2.7(0.068) 2.5(0.061) 2.6(0.069) 0.80(0.002) 0.80(0.002) 0.80(0.002)
0.25 5.1(0.181) 4.8(0.158) 4.5(0.153) 0.72(0.006) 0.73(0.005) 0.74(0.005)
0.50 8.3(0.350) 7.4(0.308) 6.1(0.264) 0.64(0.010) 0.67(0.009) 0.70(0.008)
0.75 13.7(0.518) 12.1(0.447) 8.0(0.356) 0.50(0.014) 0.52(0.013) 0.64(0.010)
1.00 20.3(0.649) 17.5(0.552) 10.1(0.396) 0.40(0.012) 0.43(0.011) 0.60(0.009)
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Figure 1: Surfaces for the true mean function of the response y1 when γ = 0.00 (top
left), 0.25 (top middle), 0.50 (top right), 0.75 (bottom left), and 1.00 (bottom right),
respectively.
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Figure 2: Surfaces for the true mean function of the response y2 when γ = 0.00 (top
left), 0.25 (top middle), 0.50 (top right), 0.75 (bottom left), and 1.00 (bottom right),
respectively.
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