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Abstract 

When control charts are used to monitor a proportion p it is traditionally assumed that 

the binary observations are independent.  The work that has been done on monitoring 

autocorrelated binary observations has assumed a two-state Markov chain model with 

first-order dependence.  We investigate the problem of monitoring p for such 

observations.  We show that the most efficient chart for independent observations, the 

Bernoulli CUSUM chart, along with the traditional Shewhart chart, are not robust to 

autocorrelation.  One approach to dealing with autocorrelation is to adjust the control 

limits of the traditional charts, but this does not produce the most efficient charts for 

detecting changes in p.  We develop a more efficient log-likelihood-ratio based CUSUM 

chart for monitoring binary observations that follow the two-state Markov chain model.  

We show that this CUSUM chart can be well approximated by using a Markov chain that 

allows calculation of the properties of this chart.  We also show that this CUSUM chart 

has better overall statistical performance than other charts available in the literature. 

 

Keywords: Autocorrelated Observations, Binary Data, CUSUM, Markov Chain.  
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Introduction 

Control charts have long been used for monitoring industrial processes to detect 

undesirable changes in these processes.  Data on the quality characteristics of a process of 

interest are usually measured in two forms: continuous measurements (traditionally called 

variables data), and discrete or count data (traditionally called attributes data).  Count 

data that take only two values, 0 and 1, can be called binary data.  Binary observations 

may arise as the natural outcome of the inspection process.  For example, if a component 

is tested by plugging in to see if it activates, then a binary observation is obtained.  In this 

type of situation the two values for the binary observation are frequently labeled 

nondefective and defective.  In some applications continuous measurements, such as 

dimensions of a component, are obtained, and the inspected components are classified 

into the two categories of conforming to the standards (when all dimensions are within 

specifications), and nonconforming (when at least one dimension is outside of 

specifications).   For convenience we use the terms nondefective and defective for the 

values 0 and 1, respectively.     

The application of process monitoring techniques has now expanded far beyond the 

traditional industrial setting.  For example, Woodall (2006) reviews applications of 

control charts in health-care monitoring.  In health-care monitoring the outcomes can be 

naturally binary.  For example, the results of a certain treatment are cured or not cured.  

In the marketing arena, the requests received by a customer service department that 

are/are not answered within the standard reply period, or the deliveries that are/are not 

sent to the correct address produce binary observation data.   
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Most published work on control charts, and in particular work on control charts for 

binary observations, assumes that the observations are independent.  However, in recent 

decades there has been increasing awareness that the observations from many processes 

are autocorrelated.  It has been shown that the quality of items are often serially 

dependent (see Broadbent (1958)), and that the existence of correlation has an adverse 

effect on the performance of the monitoring tools (such as control charts) that are 

designed based on assuming independent data (see Deligonul and Mergen (1987)).  

Alwan and Roberts (1995) provide a summary of over two hundred quality control 

applications, in which the data violate the underlying assumptions of control charts, such 

as independence, which in turn leads to misplaced control limits.  Their report highlights 

the fact that violating assumptions can be traced in a wide variety of practical 

applications.   

Although there are now a number of research papers concerned with autocorrelation 

in control charts, most of these deal with continuous random variables. The published 

work that deals with autocorrelated binary data is based on the assumption that the 

observations can be modeled as a two-state Markov chain in which the probability of an 

observation being defective depends on the value of the previous observation (first-order 

dependence).  For this model, Bhat and Lal (1990) showed how to determined the upper 

and lower control limits of a Shewhart control chart.  Their chart is based on the number 

of defective items in sequential samples taken far enough apart for the samples to be 

considered independent.  For the case of 100% inspection, Blatterman and Champ (1992) 

evaluated a Shewhart chart based on the number of nondefective items between defective 

items.  Champ, Blatterman, and Rigdon (1994) proposed an attribute CUSUM chart for 
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monitoring the proportion defective, based on the same random variable and determined 

the run-length distribution of one-sided and two-sided charts.  Shepherd, Champ, Ridgon, 

and Fuller (2007) provide two control charts, both of which plot the number of 

nondefective items before a defective item.  One signals as soon as this value falls outside 

a certain limit, whereas the other one waits for two out-of-limit values to produce a 

signal.  All the aforementioned work is based on using a two-state Markov chain model 

for first-order serially dependent binary observations, and then using a sequence of 

independent random variables in constructing the control statistic.  Lai, Xie, and 

Govindaraju (2000) studied the effect of Markov dependence in a high quality 

environment on the mean and variance of the number of observations to obtain a 

defective item.  This random variable is one plus that considered by Blatterman and 

Champ (1992), and reduces to the geometric random variable when correlation does not 

exist.  Lai et al. (2000) illustrate the effect of serial dependence on the lower and upper 

control limits of a Shewhart chart based on a two-state Markov model. 

The main objective of this paper is to develop CUSUM charts for monitoring a 

process in which the observations are binary and follow a two-state first-order Markov 

chain model.  We consider the situation in which a continuous stream of binary 

observations is available for process monitoring (as would occur with 100% inspection of 

all output from the process).  It is assumed that these binary observations become 

available individually, so the CUSUM charts can be based on samples of n = 1.   

We show that the best control chart for independent observations, the Bernoulli 

CUSUM chart (see Reynolds and Stoumbos (1999) and (2000)), along with the 

traditional Shewhart chart based on grouping observations into samples of 1n > , are not 
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robust to autocorrelation.  Thus there is a need for control charts that explicitly account 

for autocorrelation. 

The CUSUM chart that we propose is based on a statistic which is derived by using 

the log-likelihood-ratio from the two-state Markov chain.  We show that our CUSUM 

chart, called the MBCUSUM chart, can be well approximated by a CUSUM chart that is 

itself a Markov chain, thus allowing the MBCUSUM chart to be set up to have specified 

statistical properties.   

 We show that the MBCUSUM chart is more efficient than the Bernoulli CUSUM 

chart and the traditional Shewhart chart, both of which ignore any autocorrelation in the 

observation.  We also show that the MBCUSUM chart is more efficient than a chart 

recently investigated by Shepherd et al. (2007). 

 We next define the two-state Markov chain model and define performance measures 

for control charts.  Then we define some control charts that have been used for 

independent binary observations and investigate their robustness.  Finally, we develop the 

MBCUSUM chart and do performance comparisons with other control charts.  

 

The Two-State Markov Chain Model 

Consider a sequence 1 2 3, , ,X X X … of binary observations taking the values 0 and 1, 

which we call nondefective and defective, respectively.  We are referring to these 

observations as binary observations, rather than Bernoulli observations, because 

“Bernoulli” is usually associated with the case in which the observations are independent. 

A two-state Markov chain model has only two states, so the transition probability 

matrix has four elements, ijp , , 1,2i j = .  The rows must sum to one, so this matrix can 
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be characterized using only two parameters.  This model has traditionally been 

parameterized using the parameters 01 1( 1| 0)k kp P X X −= = =  and 

10 1( 0 | 1)k kp P X X −= = =  (see, for example, Bhat (1984) or Bhat and Lal (1990)), where 

01p  is labeled a, and 10p  is labeled b).  For this model the long run proportion defective, 

( 1)kp P X= = , can be expressed as 01 01 10/( )p p p p= + , and the correlation coefficient 

ρ  between successive observations can be expressed as 01 101 ( )p pρ = − + . 

For quality control applications, it seems more natural to us to directly parameterize 

the process in terms of p  and ρ , instead of 01p  and 10p .  This allows the process to be 

characterized with the traditional parameter p  representing the proportion defective and 

the parameter ρ  representing the level of autocorrelation in the process.  Then ijp  can be 

obtained from p  and ρ  using the expressions 

00 1 (1 )p p ρ= − −                                                                     (1) 

01 (1 )p p ρ= −                                                                           (2)  

10 (1 )(1 )p p ρ= − −                                                                   (3) 

11 1 (1 )(1 )p p ρ= − − − .                                                            (4) 

Here, of course, 00 01 1p p+ =  and 10 11 1p p+ = . 

To apply this model in practice requires that the in-control values of the parameters in 

the model be estimated during a Phase I analysis when process data are collected for this 

purpose.  Shepherd et al. (2007) discuss the estimation of the parameters in this model.  

Here we assume that the Phase I data set is large enough that any error associated with 

process parameter estimation can be neglected. 
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Let 0p  be the in-control value of p.  We assume that the objective of process 

monitoring is to detect any change in the process that increases p above 0p , but this 

process change does not affect the value of ρ .  In some applications detecting a decrease 

in p may also be of interest, but here we do not consider the problem of detecting 

decreases in p.   

The first observation 1X  will be observed without knowing the value of a previous 

observation.  Thus, we assume that 1X  is a binary observation with 1( 1)P X p= =   and 

1( 0) 1P X p= = − .  Once 1X  is observed, the remaining 2 3 4, , ,X X X …  can be generated 

using the two-state Markov chain model. 

 

Performance Measures for Control Charts 

Control charts are usually evaluated using the average run length (ARL), defined as 

the expected number of samples to signal.  Here we are comparing control charts based 

on different sample sizes, so different control charts with the same value of the ARL will 

not necessarily have the same expected number of observations to a signal.  Thus, we use 

the average number of observations to signal (ANOS) instead of the ARL.  The ANOS is 

defined as the expected number of observations from the start of process monitoring until 

a signal by the control chart (see Reynolds and Stoumbos (2001)). 

When the process is in control ( 0p p= ), we want the ANOS to be large so that the 

frequency of false alarms is low.  If p is above 0p  then we want a small ANOS 

corresponding to fast detection of this out-of-control situation. 
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If the ANOS computed for some 0p p>  is used as a measure of out-of-control 

performance, then there is the implicit assumption that the increase in p is present when 

monitoring starts.  However, in most applications it is likely that any increase in p will 

occur some time after monitoring has started.  Some control charts, such as CUSUM 

charts, accumulate information over time, and the control statistics of these charts may 

not be at their starting values when the increase in p occurs.  In this situation a more 

reasonable representation of the expected detection time can be obtained using the steady 

state ANOS (SSANOS), which is based on the assumption that the distribution of the 

control statistic at the time that the increase in  p occurs is the steady state or stationary 

distribution of this statistic, conditional on no false alarms. 

When a control chart is based on samples of n > 1 the increase in p may occur in the 

middle of a sample, so this possibility must be incorporated in the computation of the 

SSANOS.  In particular, we assume that when the increase occurs within a sample of n 

observations, the position of the shift within this sample has a uniform distribution. 

Methods for evaluating the ANOS and SSANOS of the control charts being 

considered in this paper are discussed in the Appendix. 

 

Traditional Control Charts for Monitoring p 

The traditional control chart for monitoring p is the Shewhart p chart (see Woodall 

(1997) for a general review), which is based on the assumption that the observations are 

independent.  To apply this chart in the case of a continuous stream of binary 

observations, the stream of observations would be partitioned into samples of n 

observations.  For example, if n = 100 then 1 2 100, , ,X X X…  would constitute the first 
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sample, 101 102 200, , ,X X X…  would constitute the second sample, and so on.  If iS  is the 

number of defectives in the ith sample, then the Shewhart p chart would signal that p has 

increased if /iS n  is above an upper control limit, which is equivalent to signaling if 

iS h≥ , for some constant h.  In many applications of the Shewhart p chart, the chart 

parameter h would be determined based on “three-sigma” control limits, but in this paper 

we choose h to give a desired value of the in-control ANOS.  When the observations are 

independent, iS  has a binomial distribution, but this does not hold when there is 

autocorrelation (see Bhat and Lal (1990) for the distribution).  We evaluated the ANOS 

and SSANOS of this Shewhart p chart by modeling it as a Markov chain (see the 

Appendix). 

Reynolds and Stoumbos (1999) investigated the performance of the Bernoulli 

CUSUM chart for monitoring p when there is a continuous stream of binary observations 

and these observations are independent.  The Bernoulli CUSUM chart is based on 

treating each individual observation as a sample of n = 1.  The Bernoulli CUSUM control 

statistic is based on a sum of log-likelihood-ratio statistics for the independent 

observations.  For observation kX  the log-likelihood-ratio statistic is  
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where 1 0p p>  is a value of p that should be detected quickly.  Thus  
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and the CUSUM control statistic is 

1max{0, }k k kB B L−= + ,  1, 2,k = … ,                                  (7) 

where 0 0B = .  Dividing Equation (7) by 1 0 0 1ln(( (1 )) /( (1 ))p p p p− −  gives a CUSUM 

control statistic, say kB′ , of the form given in Reynolds and Stoumbos (1999), 

1max{0, } ( )k k k BB B X γ−′ ′= + − ,  1, 2,k = … ,                                  (8) 

where  

1 01

0 0 1

(1 )1ln / ln
1 (1 )B

p pp
p p p

γ
⎛ ⎞ ⎛ ⎞−−

= − ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
.                                          (9) 

This chart signals if kB h′ ≥ . 

The chart parameter 1p  (which, for a given value of 0p , determines the value of Bγ ) 

can be used as a tuning parameter for the Bernoulli CUSUM chart.  Choosing 1p  to be 

close to 0p  will make the chart particularly sensitive to small increases in p, while 

choosing a larger value for 1p  will make the chart sensitive to larger increases in p.  In 

fact, a particular choice of 1p  will make the CUSUM chart optimal for detecting an 
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increase in p from 0p  to 1p p= , in the sense that the ANOS at 1p p=  is minimized 

subject to a specified value for the in-control ANOS.  However, the SSANOS at 1p p=  

will not be minimized; in terms of SSANOS the chart will be optimal for a slightly 

different value of p.  We believe that the SSANOS is the most reasonable single measure 

of out-of-control performance, so the precise specification of the tuning parameter 1p  is 

not critical in applications. 

Reynolds and Stoumbos (1999) showed that if 0p  is not large then, for a given 1p , a 

very slight adjustment of 1p  can be made so that 1/B mγ = , where m is a positive 

integer.  If 1/B mγ =  then kB′  will be a lattice random variable whose possible values are 

integer multiples of 1/ m , and this will allow the Bernoulli CUSUM chart to be modeled 

exactly as a Markov chain (see the Appendix for more details).  Modeling the Bernoulli 

CUSUM chart as a Markov chain permits the exact computation of the ANOS and 

SSANOS.   

As an alternative to formulating the problem of monitoring p as one of observing 

Bernoulli observations, an equivalent way to monitor p is to formulate the problem as one 

of observing the number of nondefectives between defectives.  The number of 

nondefectives between defectives has a geometric distribution, so these geometric 

observations can be used to construct control charts.  For example, Bourke (1991) 

investigated a geometric CUSUM chart based on the geometric observations.   The values 

of the sequence of Bernoulli observations determine the sequence of geometric 

observations, and vice versa, so the two sequences contain the same information about 

the process.   Reynolds and Stoumbos (1999) showed that the geometric CUSUM chart is 

equivalent to the Bernoulli CUSUM chart when the Bernoulli CUSUM chart starts with a 
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headstart.  This equivalence implies that is no need to consider the geometric CUSUM 

chart here separately from the Bernoulli CUSUM chart.  

For the case of independent binary observations, Sego et al. (2007) and Joner et al. 

(2007) recently evaluated the performance of the Bernoulli CUSUM chart relative to the 

performance of some surveillance schemes traditionally used in health care settings.  

They found that that the Bernoulli CUSUM chart has better performance than these 

schemes in almost all cases.   

 

Robustness of Traditional Charts to Autocorrelation 

We now consider the performance of standard control charts (designed under the 

assumption of independent binary observations) when these observations actually follow 

the two-state Markov chain model with first-order dependence.  

Consider first the situation in which a Shewhart p chart based on samples of n = 100 

is used to monitor a process with 0 .010p = .  If 5h =  for this control chart then the in-

control ANOS will be 29134.8 when there is no autocorrelation.  An in-control ANOS of 

29134.8 corresponds to 291.3 samples when n = 100.  The column labeled [1] in Table 1 

gives the in-control ANOS of this chart for some values of 0ρ > .  When p remains at 

0p  and ρ  increases, the values of 01p  and 11p  also change, so the values of 01p  and 

11p  are also given in Table 1 for easy reference.  The number of states used in modeling 

the Shewhart chart as a Markov chain is given at the bottom of Table 1. 

Table 1 also has in-control ANOS values for the Bernoulli CUSUM chart.  The value 

of h for the Bernoulli CUSUM chart was adjusted so that the in-control ANOS would be 
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very close to the value 29134.8 for the Shewhart chart when 0ρ = .  This allows for easy 

comparisons with the Shewhart chart.  Column [2] of Table 1 has in-control ANOS 

values for the Bernoulli CUSUM chart for the case of 1 .025p = , and column [3] has 

values for the case of 1 .040p = .  

Table 1.  In-control ( 0p p= ) ANOS values for the Shewhart chart and the Bernoulli 
CUSUM chart as a function of ρ  when 0p  = .010 and 1p  = .025 or .040. 

 
   Shewhart Bernoulli Bernoulli
    CUSUM CUSUM
    p1 = .025 p1 = .040
  n =  100 1 1 
ρ p01 p11 [1] [2] [3] 
      

.00 .01 .01 29134.8 29248.6 29050.8
      

.05 .0095 .0595 16956.9 18464.7 15784.0

.10 .0090 .1090 11200.4 12661.0 9972.2 

.15 .0085 .1585 7987.2 9204.0 6914.5 

.20 .0080 .2080 6000.4 6988.4 5108.3 

.25 .0075 .2575 4682.8 5487.9 3952.4 
      

.30 .0070 .3070 3763.3 4427.0 3168.1 

.35 .0065 .3565 3096.7 3651.1 2612.0 

.40 .0060 .4060 2599.0 3068.0 2204.1 

.45 .0055 .4555 2219.3 2620.4 1897.4 

.50 .0050 .5050 1925.4 2271.3 1662.8 
      
      
  h = 5 5.2459 4.0435 

Number of States 
= 1200 640 372 

      
 

 

From Table 1 we see that neither the Shewhart chart nor the Bernoulli CUSUM chart 

is robust to autocorrelation.  The value of ρ  does not have to be very far above 0 to 

produce an in-control ANOS much lower than what would be expected from the case in 
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which the observations are independent.  An in-control ANOS that is much lower than 

expected implies, of course, that false alarms will occur much more frequently than 

expected. 

Consider next the situation in which a Shewhart p chart based on samples of n = 400 

is used to monitor a process with 0 .001p = .  If 3h =  for this chart then the in-control 

ANOS will be 50739.3 when there is no autocorrelation. An in-control ANOS of 50739.3 

corresponds to 126.8 samples when n = 400.  Table 2 has the same structure as Table 1  

Table 2.  In-control ( 0p p= ) ANOS values for the Shewhart chart and the Bernoulli 
CUSUM chart as a function of ρ  when 0p  = .001 and 1p  = .004 or .008. 

   Shewhart Bernoulli Bernoulli
    CUSUM CUSUM
    p1 = .004 p1 = .080
  n =  100 1 1 
ρ p01 p11 [1] [2] [3] 
      

.00 .0010 .0010 50739.3 50759.7 50755.4
      

.05 .0009 .0510 32517.2 33856.7 30794.6

.10 .0009 .1009 23557.2 24648.6 21896.4

.15 .0009 .1509 18293.4 19024.4 16907.5

.20 .0008 .2008 14874.6 15321.5 13749.0

.25 .0008 .2507 12509.5 12753.6 11596.0
      

.30 .0007 .3007 10804.6 10907.3 10057.4

.35 .0007 .3507 9543.2 9547.6 8925.0 

.40 .0006 .4006 8597.9 8533.6 8079.3 

.45 .0006 .4506 7890.2 7778.0 7448.7 

.50 .0005 .5005 7371.9 7226.1 6990.0 
      
      
  h = 3 2.8788 2.3468 

Number of States 
= 3200 2660 1394 
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and gives in-control ANOS values for the Shewhart chart and Bernoulli CUSUM chart 

for the current situation, where the Bernoulli CUSUM chart has 1 .004p =  or .008.  Table 

2 gives the same conclusion as Table 1; the traditional charts are not robust to 

autocorrelation. 

When autocorrelation is known to be present, one approach to dealing with this 

autocorrelation is to adjust the control limits of the traditional charts to try to give more 

acceptable values for the in-control ANOS.  However, we next develop a CUSUM chart 

specifically for the case of autocorrelation, and show that this chart has better ability to 

detect shifts in p than the traditional charts when there is autocorrelation.   

 

A CUSUM Chart for Autocorrelated Data 

To develop a CUSUM chart for binary observations that follow the two-state Markov 

chain model we need to develop the log-likelihood-ratio statistics for an increase in p 

from 0p  to 1p .  The joint density of 1 2, , , kX X X…  can be written as 

1 2 1 1
2

( , , , | ) ( | ) ( | , )
k

k i i
i

f X X X p f X p f X X p−
=

= ∏… ,                               (10) 

so it follows that the terms that we need to use in the CUSUM control statistic are 

1 1

1 0

1 1

1 0

( | )ln             1     
( | )

( | , )ln       2,3, .
( | , )

k
k k

k k

f X p k
f X p

L
f X X p k
f X X p

−

−

⎧ =⎪⎪= ⎨
⎪ =
⎪⎩

…
                                               (11) 



 16

The value of kL  for 1k =  is given by Equation (5).  For the case of 2k ≥  

        ( )( ) ( ) ( )1 1 1 11 1 1 1
1 00 01 10 11( | ) k k k k k k k kX X X X X X X X

k kf X X p p p p− − − −− − − −
− = × × ×  ,                (12) 

where ( )1|ij k kp P X j X i+= = = , for { }, 0,1 .i j∈   Forming the log-likelihood-ratio using 

Equations (1), (2), (3), (4), and (12) gives 

1 00 1 01 1 10 1 11(1 )(1 ) (1 ) (1 )k k k k k k k k kL X X l X X l X X l X X l− − − −= − − + − + − + ,         (13) 
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Thus we see that 
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The CUSUM control statistic then is  

1max{0, }k k kC C L−= + ,  1, 2,k = … ,                                  (16) 

where 0 0C = .  A signal is given if kC h≥ .  Call this chart the Markov Binary CUSUM 

(MBCUSUM) chart.  Note that kL  and kC  given by Equations (15) and (16), 



 17

respectively, reduce to (6) and (7) when 0ρ = .  That is, the MBCUSUM reduces to the 

Bernoulli CUSUM in the absence of correlation. 

Recall that properties of the Bernoulli CUSUM can be evaluated by using a slight 

modification of the problem so that the CUSUM control statistic is a lattice random 

variable with possible values that are integer multiples of 1/m.  This allows the Bernoulli 

CUSUM to be modeled as a Markov chain.  For the MBCUSUM chart we adopt a similar 

strategy to get an approximate MBCUSUM chart.   

The approximate MBCUSUM chart is obtained by approximating kL  by a random 

variable whose possible values are integer multiples of a constant.  This produces a 

CUSUM control statistic that is a lattice random variable that can be modeled as a 

Markov chain.  The approach that we used to approximate kL  is to obtain the integer 

00nint(|1/ |)m l= , where nint( )⋅  indicates the nearest integer value.  Then kL  is 

approximated by a new statistic, say kL∗  whose possible values are integer multiples of 

1/m.  In particular, for 2k ≥ , 
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Now for the first observation, 1 10L l=  when 1 0x =  and 1 01L l=  when 1 1x = , so 1 10L l∗ ∗=  

when 1 0x =  and 1 01L l∗ ∗=  when 1 1x = .  The approximate MBCUSUM control statistic 

then is  
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1max{0, }k k kC C L∗ ∗ ∗
−= + ,  1, 2,k = … ,                                  (18) 

where 0 0C∗ = .  A signal is given if kC h∗ ≥ , where h now is taken as an integer multiple 

of 1/m.  Details about modeling this chart as a Markov chain are given in the Appendix. 

 

Comparisons of Charts 

To compare the out-of-control performance of different control charts, we would like 

to choose the control limits so that the in-control ANOS values are the same.  However, 

the discreetness of the distributions only allows us to get in-control ANOS values that are 

very close.  The Shewhart chart has very few possible values for the in-control ANOS, so 

we first chose the control limit for the Shewhart chart, and then found the control limits 

of the CUSUM charts to match the in-control ANOS of the Shewhart chart as closely as 

possible. 

Consider first the situation from Table 1 in which 0 .010p =  and the Shewhart chart 

is based on samples of n = 100 with a control limit of h = 5.  When .05ρ =  the in-control 

ANOS of this chart is 16956.9 (this corresponds to 169.6 samples of n = 100).  The 

column labeled [1] in Table 3 gives out-of-control SSANOS values for this chart for 

various values of 0p p> .  Note that this chart can signal only after a sample of 100 

observations has been obtained.  However, the SSANOS can actually be below 100 

because the increase in p  may occur while the sample is being taken, so the time from 

the increase in p  to the end of the sample may be less than 100.  Even though the 

SSANOS may be below 100, column [1] shows that the SSANOS of this chart is 

relatively high for very high values of p.  The reason is, of course, that if a shift in p 
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occurs early in the sample of 100, a signal cannot be given until the complete sample of 

100 observations have been obtained, regardless of how many defectives may have been 

observed. 

It seems clear that the performance of the Shewhart chart could be improved if 

curtailed sampling was used.  With curtailed sampling a signal would be given as soon as  

Table 3.  ANOS and SSANOS values for Shewhart and CUSUM charts for detecting 
increases in p when 0p  = .010, 1p  = .025 or .040, and .05ρ = . 

 
   Shewhart CUSUM, p1 = .025 CUSUM, p1 = .040 
   Standard Curtailed Bernoulli Exact Approx Bernoulli Exact Approx 
      MBCUCUM MBCUCUM  MBCUCUM MBCUCUM

  n =   100 100 1 1 1 1 1 1 
p p01 p11 [1] [2] [3] [4] [5] [6] [7] [8] 
           

.010 .0095 .0595 16956.9 16935.5 16977.5 16869.6 16850.7 17046.1 16908.0 16914.2 
           

.015 .0142 .0643 4226.2 4210.2 2351.4 2195.9 2200.7 3155.0 2853.7 2876.8 

.020 .0190 .0690 1678.5 1658.3 848.3 796.8 798.0 1102.0 996.0 1004.6 

.025 .0238 .0738 870.6 848.3 473.3 448.0 448.1 559.9 512.3 515.7 

.030 .0285 .0785 536.6 512.8 322.3 306.7 306.6 353.0 326.4 327.9 

.040 .0380 .0880 281.4 254.9 195.2 187.3 187.1 195.1 182.9 183.1 
           

.050 .0475 .0975 190.3 161.2 139.8 135.2 134.9 133.4 126.1 126.1 

.070 .0665 .1165 125.4 91.7 89.1 87.5 87.3 81.4 78.1 77.9 

.100 .0950 .1450 95.6 56.6 57.7 57.9 57.7 51.3 50.3 50.1 

.200 .1900 .2400 70.5 25.4 26.7 28.4 28.3 23.3 23.8 23.7 

.300 .2850 .3350 62.7 16.3 17.5 19.9 19.9 15.3 16.3 16.3 
           

.400 .3800 .4300 58.8 12.0 13.1 16.0 16.0 11.4 13.0 13.0 

.500 .4750 .5250 56.5 9.5 10.4 14.0 13.9 9.1 11.1 11.1 

.700 .6650 .7150 53.9 6.7 7.4 12.4 12.3 6.4 9.5 9.5 

.900 .8550 .9050 52.5 5.2 5.7 13.0 12.9 5.0 9.4 9.4 
           
           
  h = 5 5 5.1475 4.3058 4.2899 4.1087 5.1496 5.1176 

Number of States = 1200 1200 628 – 592 378 – 348 
           

 

five defectives have been found in a sample without waiting until the end of the sample.  

Column [2] in Table 3 gives the in-control ANOS and out-of-control SSANOS values for 
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the Shewhart chart with curtained sampling.  We see that using curtailed sampling 

produces a slight reduction in the in-control ANOS from 16956.9 to 16935.5, but gives a 

dramatic reduction in the SSANOS for very large shifts in p.  For example, if p increases 

to .50, then the SSANOS for the standard sampling method is 56.5, while it is only 9.5 

for curtailed sampling.  Although it is clear that curtailed sampling can be quite beneficial 

if there is a large shift in p, curtained sampling has rarely been used in applications. 

In Table 3, columns [3], [4], and [5], respectively, give the in-control ANOS and out-

of-control SSANOS values for the Bernoulli CUSUM chart, the exact MBCUSUM chart, 

and the approximate MBCUSUM chart when 1 .025p = .  Columns [6], [7], and [8] 

correspond to the case of 1 .040p = .  ANOS and SSANOS values for the exact 

MBCUSUM were obtained by simulation using 100 million simulation runs.  When the 

ANOS and SSANOS values of a control chart were obtained by using a Markov chain 

model, the number of states used is given at the bottom of the table. 

In Table 3 we see that the exact MBCUSUM is very slightly better than the 

approximate MBCUSUM for small shifts in p, but the reverse is true for large shifts.  

However, the difference between the exact and approximate MBCUSUM charts is so 

small that it should be of no practical concern.  Thus it appears that the approximate 

MBCUSUM can be used instead of the exact MBCUSUM with negligible effect on the 

SSANOS performance.    

From Table 3 we see that the MBCUSUM chart has better performance than the 

Bernoulli CUSUM chart except for very large shifts in p.  Very large shifts in p were 

included here to show how the charts perform in extreme situations.  In most applications 

the primary interest would likely be in the values of p for which the MBCUSUM has 
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better performance than the Bernoulli CUSUM, so we conclude that the MBCUSUM is a 

better choice when there is autocorrelation.  

Comparing the CUSUM charts to the Shewhart charts in Table 3 show that the 

CUSUM charts have much better performance than the Shewhart chart for small shifts in 

p.  The CUSUM chart also have much better performance than the Shewhart chart for 

large shifts in p unless curtailed sampling is used in the Shewhart chart.   As expected, 

the performance of the CUSUM charts depends on the choice of 1p , with 1 .025p =  

giving better performance for small shifts, and 1 .040p =  giving better performance for 

larger shifts.  Even when curtailed sampling is used with the Shewhart chart, the 

Shewhart chart is uniformly worse than the Bernoulli CUSUM chart with 1 .040p = .   

Next consider the situation in which 0 .010p =  and .20ρ = .  If a Shewhart chart with 

n = 100 and a control limit of h = 5 is used then, from Table 1, we see that the in-control 

ANOS of this chart is only 6000.4 (corresponding to 60.0 samples of n = 100).  To obtain 

a larger in-control ANOS consider a control limit of h = 6, which gives an in-control 

ANOS of 16890.0 (corresponding to 168.9 samples of n = 100).  Table 4 gives in-control 

ANOS and out-of-control SSANOS values for Shewhart and CUSUM charts for this 

situation, where h for the CUSUM charts has been adjusted to give an in-control ANOS 

approximately the same as for the Shewhart chart.  The structure of Table 4 is the same as 

for Table 3.   

The basic conclusions from Table 4 are similar to those from Table 3.  In particular, 

there is negligible difference between the exact and approximate MBCUSUM charts, the 

MBCUSUM chart is better than the Bernoulli CUSUM chart except for very large shifts, 

the CUSUM charts are much better than the Shewhart chart for small shifts, and the 
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CUSUM charts are much better than the Shewhart chart for large shifts unless curtailed 

sampling  is used with the Shewhart chart. 

The in-control ANOS values in Table 4 are close to those of Table 3, so comparisons 

can be made between the case of .05ρ =  in Table 3 and the case of higher correlation  

Table 4.  ANOS and SSANOS values for Shewhart and CUSUM charts for detecting 
increases in p when 0p  = .010, 1p  = .025 or .040, and ρ  = .20. 

 
   Shewhart CUSUM, p1 = .025 CUSUM, p1 = .040 
   Standard Curtailed Bernoulli Exact Approx Bernoulli Exact Approx 
      MBCUSUM MBCUSUM  MBCUSUM MBCUSUM

  n =   100 100 1 1 1 1 1 1 
p p01 p11 [1] [2] [3] [4] [5] [6] [7] [8] 
           

.010 .0080 .2080 16890.0 16863.3 16830.1 16821.1 16814.2 16815.9 16943.0 16945.9 
           

.015 .0120 .2120 5509.6 5493.1 2956.0 2394.3 2391.6 3989.9 3057.0 3034.0 

.020 .0160 .2160 2476.1 2454.8 1114.6 896.9 896.3 1499.4 1106.9 1098.5 

.025 .0200 .2200 1351.7 1328.4 625.5 509.5 509.3 773.1 580.1 576.8 

.030 .0240 .2240 842.7 818.2 426.0 350.3 350.3 487.6 373.2 371.7 

.040 .0320 .2320 427.2 400.8 257.6 214.8 214.8 268.3 210.8 210.6 
           

.050 .0400 .2400 272.3 244.2 184.2 155.4 155.4 182.8 146.0 146.1 

.070 .0560 .2560 160.9 129.3 117.3 100.8 100.8 111.1 90.8 91.0 

.100 .0800 .2800 111.9 75.5 76.0 66.9 66.9 70.0 58.6 58.9 

.200 .1600 .3600 77.1 32.7 35.2 33.4 33.4 31.2 28.2 28.4 

.300 .2400 .4400 67.2 20.9 22.7 24.2 24.1 19.9 20.1 20.2 
           

.400 .3200 .5200 62.3 15.3 16.6 20.2 20.2 14.6 16.7 16.8 

.500 .4000 .6000 59.4 12.1 13.1 18.4 18.3 11.6 15.1 15.2 

.700 .5600 .7600 56.0 8.5 9.3 18.5 18.3 8.2 14.7 15.1 

.900 .7200 .9200 54.2 6.6 7.2 27.5 26.6 6.4 19.7 21.0 
           
           
  h = 6 6 6.6721 4.1393 4.1585 5.5000 4.9883 5.0488 

Number of States = 1400 1400 814 – 682 506 – 414 
           
 
( .20ρ = ) in Table 4.  We see that detecting a given shift in p is harder when the 

correlation is higher.  For example, the approximate MBCUSUM chart with 1 .040p =  in 
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Table 3 requires an average of 183.1 observations to detect a shift to .040p = , while for 

the higher correlation in Table 4 this chart requires an average of 210.6 observations. 

Next consider the situation from Table 2 in which a Shewhart p chart based on 

samples of n = 400 is used to monitor a process in which 0 .001p = .  If 3h =  for this 

chart then the in-control ANOS will be 32517.2 when .05ρ =  (corresponding to 81.3 

samples when n = 400).  Table 5 gives in-control ANOS and out-of-control SSANOS 

values for charts for this situation.  The structure of Table 5 is similar to that of Tables 3 

and 4. 

When 0 .001p =  and .20ρ = , a Shewhart chart with n = 400 and a control limit of h 

= 3 has an in-control ANOS of 14874.6 (corresponding to 37.2 samples of n = 400).  To 

obtain a larger in-control ANOS consider a control limit of h = 4, which gives an in-

control ANOS of 50369.9 (corresponding to 125.9 samples of n = 400).  Table 6 gives in-

control ANOS and out-of-control SSANOS values for charts for this situation. 

The conclusions from Tables 5 and 6 for the case of 0 .001p =  are similar to the 

conclusions from Tables 3 and 4 for the case of 0 .010p = .  Thus we conclude that when 

there is autocorrelation, the MBCUSUM chart gives better overall performance than 

either the Bernoulli CUSUM chart (which is designed for independent observations) or 

the traditional Shewhart chart (which is based on grouping observations into samples of 

n).  

A Chart Proposed by Shepherd et al. (2007) 

For the case in which the binary observations follow the two-state Markov chain 

model, Shepherd et al. (2007) proposed two control charts based on the number of 
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nondefectives between defectives.  Let 1Y  be the number of nondefectives before the first 

defective, and let jY  be the number of nondefectives between defectives 1j −  and j , for 

2,3i = … .  Shepherd et al. (2007) derived various properties of 1 2, ,Y Y … , and showed 

  

Table 5.  ANOS and SSANOS values for Shewhart and CUSUM charts for detecting 
increases in p when 0p  = .001, 1p  = .004 or .008, and .05ρ = . 

   Shewhart CUSUM, p1 = .004 CUSUM, p1 = .008 
   Standard Curtailed Bernoulli Exact Approx Bernoulli Exact Approx 
      MBCUSUM MBCUSUM  MBCUSUM MBCUSUM

  n =   400 400 1 1 1 1 1 1 
p p01 p11 [1] [2] [3] [4] [5] [6] [7] [8] 
           

.001 .0009 .0510 32517.2 32389.8 32502.8 32523.2 32575.6 32562.4 32517.3 32528.0 
           

.002 .0019 .0519 7153.0 7057.0 5190.8 4752.6 4758.2 6425.7 5529.2 5525.5 

.003 .0029 .0529 3119.1 3004.2 2161.2 1988.9 1990.5 2629.3 2264.2 2262.5 

.004 .0038 .0538 1828.2 1704.3 1290.6 1193.8 1194.6 1484.2 1299.1 1298.2 

.005 .0047 .0548 1261.7 1131.3 909.2 842.9 843.3 993.9 882.6 882.3 

.006 .0057 .0557 963.2 827.3 700.2 649.2 649.5 735.7 661.1 660.9 
           

.007 .0067 .0566 785.9 645.1 569.2 527.3 527.5 580.2 526.6 526.5 

.008 .0076 .0576 671.5 526.2 479.7 443.7 443.8 477.7 437.2 437.2 

.010 .0095 .0595 536.1 382.8 365.2 336.5 336.5 351.9 327.0 327.0 

.015 .0142 .0643 396.3 228.1 228.8 209.3 209.3 211.6 202.8 202.9 

.020 .0190 .0690 340.6 163.1 165.6 152.1 152.1 151.5 148.6 148.7 
           

.025 .0238 .0738 310.2 127.1 129.0 119.9 119.9 118.4 117.8 117.9 

.030 .0285 .0785 290.6 104.1 105.1 99.3 99.3 97.4 97.8 97.9 

.040 .0380 .0880 266.4 76.4 76.2 74.4 74.4 72.2 73.2 73.3 

.050 .0475 .0975 251.9 60.3 59.7 59.7 59.7 57.5 58.5 58.6 

.060 .0570 .1070 242.3 49.8 49.0 49.9 49.9 47.8 48.8 48.9 
           

.080 .0760 .1260 230.3 37.0 36.2 37.9 37.9 35.8 36.7 36.8 

.100 .0950 .1450 223.2 29.4 28.8 30.7 30.7 28.6 29.4 29.5 

.200 .1900 .2400 208.9 14.5 14.3 16.5 16.5 14.2 14.9 15.0 

.300 .2850 .3350 204.1 9.6 9.6 12.0 12.0 9.5 10.2 10.3 

.500 .4750 .5250 200.3 5.7 5.7 9.2 9.2 5.7 6.9 6.9 
           
           
  h = 3 3 2.8506 3.5733 3.5743 2.3906 4.2466 4.2533 

Number of States = 3200 3200 2634 – 2502 1420 – 1276 
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that these random variables are independent.  The distribution of 1Y  is different from jY , 

2j ≥ , because the value of the observation before 1X  is unknown. 

 

Table 6.  ANOS and SSANOS values for Shewhart and CUSUM charts for detecting 
increases in p when 0p  = .001, 1p  = .004 or .008, and ρ  = .20. 

   Shewhart CUSUM, p1 = .004 CUSUM, p1 = .008 
   Standard Curtailed Bernoulli Exact Approx Bernoulli Exact Approx 
      MBCUSUM MBCUSUM  MBCUSUM MBCUSUM

  n =   400 400 1 1 1 1 1 1 
p p01 p11 [1] [2] [3] [4] [5] [6] [7] [8] 
           

.001 .0008 .2008 50369.9 50220.1 50366.2 50406.8 50398.4 50464.3 50464.5 50463.0 
           

.002 .0016 .2016 13653.9 13557.5 8260.8 6414.0 6409.7 11489.9 7824.8 7824.2 

.003 .0024 .2024 6141.5 6026.2 3318.9 2581.8 2580.4 4603.7 3050.6 3050.2 

.004 .0032 .2032 3509.3 3387.0 1939.8 1530.7 1530.4 2504.4 1704.4 1704.2 

.005 .0040 .2040 2313.9 2187.3 1350.5 1076.1 1076.1 1631.5 1140.2 1140.2 

.006 .0048 .2048 1678.2 1548.2 1032.1 827.7 827.9 1186.0 845.5 845.5 
           

.007 .0056 .2056 1302.0 1169.0 834.5 672.4 672.5 924.4 668.5 668.6 

.008 .0064 .2064 1061.5 925.4 700.3 566.0 566.2 755.0 552.0 552.0 

.010 .0080 .2080 782.7 640.8 530.0 429.8 430.0 550.8 409.1 409.1 

.015 .0120 .2120 509.9 354.4 330.7 267.0 267.2 327.6 249.9 249.9 

.020 .0160 .2160 411.6 245.2 241.5 192.5 192.6 232.6 181.6 181.6 
           

.025 .0200 .2200 362.7 188.1 190.8 150.1 150.2 180.0 143.5 143.5 

.030 .0240 .2240 333.1 152.9 158.0 123.1 123.2 146.4 119.1 119.1 

.040 .0320 .2320 298.1 111.3 117.7 91.0 91.1 106.3 89.3 89.3 

.050 .0400 .2400 277.5 87.4 93.8 72.6 72.7 83.4 71.7 71.7 

.060 .0480 .2480 263.8 72.0 78.0 60.7 60.7 68.7 60.0 60.0 
           

.080 .0640 .2640 246.8 53.2 58.3 46.0 46.0 51.0 45.5 45.5 

.100 .0800 .2800 236.5 42.2 46.6 37.3 37.3 40.7 36.9 36.9 

.200 .1600 .3600 216.2 13.7 23.2 20.1 20.1 20.3 19.9 19.9 

.300 .2400 .4400 209.4 10.2 15.5 14.7 14.7 13.5 14.5 14.5 

.500 .4000 .6000 204.0 8.2 9.3 11.3 11.3 8.1 11.2 11.2 
           
           
  h = 4 4 4.0931 3.8031 3.8101 3.6128 4.6124 4.6180 

Number of States = 4000 4000 3782 – 3170 2146 – 1644 
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  One control chart proposed by Shepherd et al. (2007) signals if a value of jY  falls 

below a lower control limit, and the second control chart signals if two consecutive 

values of jY  fall below a lower control limit.  Shepherd et al. (2007) actually suggested 

using two control limits, one for 1Y  and the other for jY , 2j ≥ , because the distributions 

are a bit different.  However, here we are using the SSANOS as the measure of out-of-

control performance, and the distribution of 1Y  has little effect on the SSANOS because 

the shift in p is assumed to occur after the process has reached its conditional steady state 

distribution. Thus we can simplify the specification of these charts by using one control 

limit h for all jY , 1j ≥ .  The second control chart seems to have the best properties, so 

we consider a control chart that signals if two consecutive values of jY  fall below h, and, 

for convenience, refer to this chart as the SCRF  chart (for Shepherd, Champs, Ridgon, 

and Fuller). 

The SCRF chart is actually a special case of what is usually called the “sets method” 

originally proposed by Chen (1978) in the context of health care monitoring.  With the 

sets method a signal is given if a specified number of consecutive values of jY  fall below 

h.  Previous work on the sets method, however, has been for the case of independent 

observations.  Sego, Woodall, and Reynolds (2007) recently did a comprehensive 

evaluation of the sets method, some variations of the sets method, and the Bernoulli 

CUSUM chart for the case of independent observations.  The conclusion was that the 

Bernoulli CUSUM chart almost uniformly outperforms the sets method and its variations. 

We now consider the performance of the SCRF chart relative to the performance of 

the MBCUSUM chart when there is autocorrelation.  We were not able to find 
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parameters of the SCRF chart that give a close match to the in-control ANOS values used 

in Tables 3 – 6, so we chose four SCRF charts and then adjusted h for the approximate 

MBCUSUM chart to closely match the in-control ANOS of the SCRF charts.  In 

particular, we chose 0 .001p = , and for .05ρ =  we used h = 50 and 200, and for .20ρ =  

we used h = 10 and 100.  The SCRF chart seems to be particularly effective for detecting 

large shifts in p, so we used 1 .008p =  in the MBCUSUM charts.  The ANOS and 

SSANOS values for the four cases are given in Table 7 (details about obtaining these 

values for the SCRF chart are given in the Appendix).  Values of 01p  and 11p  are not 

given in Table 7, but can be obtained from Tables 5 and 6 for given values of p and ρ . 

The SSANOS values in Table 7 show that the MBCUSUM chart has better 

performance than the SCRF chart, except for very large shifts.  For example, comparing 

columns [1] and [2] in Table 7 shows that the MBCUSUM has a lower SSANOS for all 

values of p shown except for .500p = .  Comparing columns [3] and [4] shows that the 

MBCUSUM has a lower SSANOS except for .050p ≥ .  Now .500p =  corresponds to a 

500-fold increase in p above the in-control value of .001, and .050p =  corresponds to a 

50-fold increase.  It does not seem likely that such large increases in p would be of much 

concern in most applications.  We included large values of p in the tables just to show 

how the charts perform in extreme situations.   Even in the cases of very large values of p 

where the SCRF chart is better than the MBCUSUM, the SCRF chart is not dramatically 

better than the MBCUSUM.  But for smaller values of p, which are presumably of more 

interest, the MBCUSUM can be dramatically better than the SCRF chart.      
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Table 7.  ANOS and SSANOS values for the SCRF and MBCUSUM charts for detecting 
increases in p when 0p  = .001, 1p  = .008, and ρ  = .05 or .20. 

 
 ρ = .05 ρ = .20 
 SCRF Approx SCRF Approx SCRF Approx SCRF Approx 
  MBCUSUM  MBCUSUM  MBCUSUM  MBCUSUM

n = – 1 – 1 – 1 – 1 
p [1] [2] [3] [4] [5] [6] [7] [8] 
         

.001 26641.8 26656.8 124029.0 124620.5 19380.4 19471.3 29494.7 29702.4 
         

.002 5826.6 4975.5 30978.0 12308.2 6894.7 4527.8 13847.9 5728.9 

.003 2515.4 2107.0 12867.2 3901.3 3593.9 2082.4 8762.8 2452.3 

.004 1445.9 1227.8 6794.1 1979.3 2226.7 1259.7 6249.4 1435.5 

.005 968.5 841.1 4133.3 1262.6 1529.5 878.9 4764.7 985.4 

.006 712.1 632.9 2762.1 912.6 1125.7 667.3 3790.6 742.2 
         

.007 556.9 505.4 1972.3 710.8 870.4 535.1 3107.2 592.9 

.008 454.7 420.3 1480.0 581.1 698.6 445.5 2604.8 493.1 

.010 330.9 314.6 927.3 425.4 487.6 332.8 1920.6 368.9 

.015 197.3 194.6 417.4 254.7 262.9 202.6 1068.5 227.6 

.020 142.0 141.6 248.8 181.4 175.5 144.7 686.7 165.0 
         

.025 111.6 111.3 171.8 140.3 131.1 112.1 480.8 129.4 

.030 92.3 91.6 129.5 114.0 104.7 91.1 356.6 106.2 

.040 68.8 67.4 86.0 82.7 75.1 66.1 220.4 77.7 

.050 54.9 53.0 64.4 65.0 58.9 51.9 151.1 60.9 

.060 45.6 43.6 51.6 53.8 48.7 42.8 111.0 49.9 
         

.080 34.2 31.9 37.4 40.4 36.3 31.9 68.8 36.4 

.100 27.3 25.1 29.5 32.6 29.0 25.7 48.0 28.6 

.200 13.6 12.2 14.6 17.6 14.4 13.6 17.4 14.1 

.300 9.1 8.4 9.7 12.8 9.6 9.7 10.5 9.9 

.500 5.4 6.1 5.8 9.9 5.8 7.2 6.0 7.3 
         
         

h 200 4.1133 50 5.7333 100 3.8483 10 4.0843 
states – 1234 – 1720 – 1370 – 1454 
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Conclusions and Discussion 

We have considered the situation in which the binary observations from a process 

follow a two-state Markov chain model, and have shown that the resulting 

autocorrelation of the observations has a deleterious effect on standard control charts 

designed for independent observations.  In particular, positive autocorrelation leads to 

many more false alarms than would be expected for independent observations.  Thus, 

when developing control charts to monitor a process with binary observations, it is 

important to take autocorrelation into account when it is present.  

We have developed a CUSUM chart for the situation in which the autocorrelated 

binary observations follow a two-state Markov chain model.  This CUSUM chart, called 

the MBCUSUM chart, is derived directly from the log-likelihood-ratio statistics for the 

first-order Markov dependent binary data.  We have shown that this CUSUM chart can 

be well approximated by a Markov chain by approximating the log-likelihood-ratio 

statistic by a statistic that is an integer multiple of a constant.  This allows for the exact 

computation of properties such as the ANOS and SSANOS. 

Numerical results were given to show that the MBCUSUM chart has better overall 

performance than the standard Shewhart p chart and the Bernoulli CUSUM chart that 

were designed for independent observations.  Thus, by taking the autocorrelation into 

account, more effective detection of shifts in p can be obtained.   

The performance of the MBCUSUM chart was also compared to the performance of a 

control chart proposed by Shepherd et al. (2007) for autocorrelated binary observations 

that follow the two-state Markov chain model.  It was found that the MBCUSUM chart 

has better performance except for very large shifts in p. 
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When monitoring a process with binary observations that follow the two-state 

Markov chain model, we recommend using the MBCUSUM chart. 

In most applications the primary interest will be in detecting increases in p, but in 

some cases detecting decreases in p will also be of interest.  In this situation an 

MBCUSUM chart can be developed for detecting decreases in p.  Then two MBCUSUM 

charts, one designed for detecting increases in p and the other for decreases in p, can be 

used simultaneously.  Two natural extensions of this work would be a general model for 

autocorrelated binary observations with higher orders of dependence, and control charts 

for multivariate autocorrelated binary observations. 

  

Appendix 

The properties of the approximate MBCUSUM chart were evaluated by modeling the 

statistic kC∗  as a Markov chain.  To see how this works, first note that all non-positive 

values of kC∗  can be grouped together to correspond to one state, and that the largest 

possible value of kC∗  that does not produce a signal is (1/ )h m− .  By design (see 

Equation (18)), the values of kC∗  are multiples of 1/ m . It follows that the number of 

possible values of kC∗  that need to be considered in determining the transient states is 

( )( )1 1H m h m mh= − + = .  Each of these possible values must correspond to two states 

in the Markov chain because we must know the value of 1kX − , in addition to the value of 

1kC∗
− , to determine the transition probabilities corresponding to the possible values  of 



 31

kC∗  .  The total number of transient states is then 2H , and we label these states as states 

1,2, , 2H… .  The relationships between the values of ( , )k kX C∗  and the state numbers are 

( , ) (0, ( 1) / )  2 1k kX C t m i t∗ = − ⇔ = −  

                 ( , ) (1, ( 1) / )  2k kX C t m i t∗ = − ⇔ =  

for 1, 2, ,t H= … .  The possible transitions are given in Table 8. 

As an example to illustrate the construction of the exact and approximate 

MBCUSUM, suppose that 0 .010p = , 1 0.025p = , and ρ = 0.05.  Then from Equation 

(15) the possible values for kL  are 00 .0145l = − , 01 0.9163l = , 10 .0153l = − , and 

11 .2147l = .  The exact MBCUSUM would be carried out using these values in the 

CUSUM control statistic given by Equation (16). 

Table 8. Transitions and Transition Probabilities for the Approximate MBCUSUM Chart 

1

00 00

01 01 01 01

10

Transition           Probability            i        

0 0              1 1 or 2                   3,5,...,2 1

0 1   2 1                1,3,...,2 2 1

1 0             

k k kX X L

l i i p H

l i i d p H ml

l

−

∗

∗ ∗

∗

→ → − −

→ + + − −

10 10 10 10

11 11 11 11

2 1 or 2              2 2,2 4,...,2

1 1              2                               2,4, ,2 2

i i ml p ml ml H

l i i ml p H ml

∗ ∗ ∗

∗ ∗ ∗

→ → − + +

→ + −…
 
 

The approximate MBCUSUM would be constructed using m = int(1/ .0145)  = 

int(69.01)  = 69, so we approximate kL  with kL∗  whose possible values are integer 

multiples of 1/69.  This gives 00l∗  = ( )int (69)( .0145) / 69−  = -1/69, 01l∗  = 

( )int (69)(.9163) / 69  = 63/69. 10l∗  = ( )int (69)(.0153) / 69  = -1/69, and 11l∗   = 
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( )int (69)(.2147) / 69  = 15/69.  For the purpose of illustration, choose 100 69h =  (i.e., 

100H = ) so that there are 200 transient states.   

The in-control values ( p = 0p ) of conditional probabilities for the binary 

observations modeled as a two-state Markov chain are 

 00 1 (1 ) 1 0.010(1 0.05) 0.9905p p ρ= − − = − − =  

 01 001 0.0095p p= − =  

 10 (1 )(1 ) (1 0.010)(1 0.05) .9405p p ρ= − − = − − =  

 11 101 0.0595p p= − =  

Each row of the matrix, say Q , of transition probabilities for the transient states has at 

most two nonzero elements as is shown in Figure 1.   

 

1

*

*
1

00 01

: 1 2 3 31 32 127 128 197 198 199 200
: 0 1 0 0 1 0 1 0 1 0 1
: 0 0 1 69 15 69 15 69 63 69 63 69 98 69 98 69 99 69 99 69

0 0 0 0 01 1 0 0
1 2 1 0
2 3 0 1 69
2 4 1 1 69
3 5 0 2 69
3 6 1 2 69

37 73 0 36 69

85 170 1 84 69

100 199 0 99 69
100 200 1 99 69

k

k

k
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Figure 1.  The Q  Matrix for the MBCUSUM with 0 0.010p = , 1 0.025p = , 0.05ρ = , 
and 100H = . 
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If we let 1 2 2( , , , )HN N N ′=N …  be the vector of ANOS values corresponding to 

starting in each of the 2H transient states, then N  can be obtained in the standard way 

from 1( )−= −N I Q 1 , where 1  is a column vector of 1’s.  If 1 0X =  then 1 0C∗ = , 

corresponding to state 1, and if 1 1X =  then 1 01C l∗ ∗= , corresponding to state 012 2ml∗ + .  

Assuming that 0 0C∗ =  and it is not possible to signal at the first observation ( 01Ch l∗> ), 

the ANOS of interest is   

01
1 2 2ANOS 1 (1 ) mlp N pN ∗ +

= + − + , 

because 1X  is 0 with probability 1 – p and 1 with probability p.  The SSANOS can be 

calculated from πN , where π  is the normalized left eigenvector of Q  that corresponds 

to the largest eigenvalue (computed for 0p p= ). 

 

The ANOS and SSANOS of the exact MBCUSUM chart could not be obtained 

exactly by modeling the control statistic kC  as a Markov chain.  We attempted to use a 

Markov chain approximation in the spirit of Brook and Evans (1972), but found that the 

accuracy obtained was not as good as that obtained using simulation (for other methods 

see Hawkins and Mergen (1978)).  Thus the results given here for the exact MBCUSUM 

chart are based on simulation with 100 million runs.  The out-of-control SSANOS was 

simulated by generating 10,000 in-control observations for each run, and then introducing 

the increase in p.  If a false alarm occurred in a sequence of 10,000 in-control 

observations then this sequence was discarded and another sequence was generated. 
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The Bernoulli CUSUM chart with control statistic given by Equation (8) can be 

modeled as a Markov chain when Bγ  given by Equation (9) satisfies 1/B mγ = , where m 

is a positive integer.   As in the case of the MBCUSUM, when there is autocorrelation we 

need two states for each possible value of kB′ .  The construction of the transition 

probability matrix is similar to the construction used for the MBCUSUM.  With the 

Bernoulli CUSUM statistic the value of kL  does not depend on 1kX − , but the transition 

probabilities do depend on 1kX − . 

The Shewhart chart can also be modeled as a Markov chain.  Let ijS s= , for 

0 s n≤ ≤ , be the number of defectives observed after observation j in sample i, for 

1,2, ,j n= … .  The number of transient states requited is 2 ( 1)n h + .  For a given value of  

ijS , if the previous observation is a nondefective, then the state is ( 1)i n j− + , otherwise 

if the current observation is a defective, then the state is ( 1) 1i n j− + + .   

For the SCRF chart, Shepherd et al. (2007) used a Markov chain with three transient 

states to obtain the expected number of Y’s until a signal.  They evaluated the SCRF chart 

using the expected number of Y’s, and did not consider the ANOS or the steady state 

properties of the SCRF chart.  To obtain the ANOS of the SCRF chart we used this 

Markov chain with three transient states to find the expected number of times each state 

is occupied, and then obtained the ANOS by using the expected number of observations 

corresponding to each state (the expected values of 1jY + , 1j ≥ ).  The SSANOS must 

account for the fact that the shift in p can occur anywhere within a sequence of 

nondefectives, so we used simulation (with 100 million runs) to obtain the SSANOS of 

the SCRF chart.     
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