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Abstract

Mixed models are powerful tools for the analysis of clustered data and
many extensions of the classical linear mixed model with normally dis-
tributed response have been established. As with all parametric mod-
els, correctness of the assumed model is critical for the validity of the
ensuing inference. An incorrectly specified parametric means model
may be improved by using a local, or nonparametric, model. Two
local models are proposed by a pointwise weighting of the marginal
and conditional variance-covariance matrices. However, nonparamet-
ric models tend to fit to irregularities in the data and provide fits with
high variance. Model robust regression techniques estimate mean re-
sponse as a convex combination of a parametric and a nonparametric
model fits to the data. It is a semiparametric method by which incom-
plete or incorrect specified parametric models can be improved through
adding an appropriate amount of the nonparametric fit. We compare
the approximate integrated mean square error of the parametric, non-
parametric, and mixed model robust methods via a simulation study,
and apply these methods to monthly wind speed data from counties in
Ireland.

KEYWORDS: semiparametric, nonparametric, mixed effects, robust

1 INTRODUCTION

The general linear mixed regression model (Laird and Ware, 1982) is com-
monly expressed as

Y = Xβ + Zb + ε, (1)
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where Y is an (n x 1) vector of responses, X and Z are (n x p) and (n x q)
model matrices, β is a (p x 1) vector of fixed effects, b is a (q x 1) vector
of random effects, and ε is an (n x 1) vector of random disturbances. We
assume that the random effects and errors are normal variates with zero
expectation and V ar(b) = B, V ar(ε) = R, and Cov(b, ε) = 0.

The estimate of the fixed effects and prediction of the random effects

β̂ = (X′
V

−1
X)−1

X
′
V

−1
Y (2)

b̂ = BZ
′
V

−1(Y − Xβ̂) (3)

are the solutions to the mixed model equations, where V ar(Y) = V =
R + ZBZ

′. The variance-covariance matrix V is typically unknown and
parametrized as V(θ). After estimating θ by (restricted) maximum like-
lihood, ANOVA, or some other method, the estimated variance-covariance
matrix V̂ = V(θ̂) is substituted in (2), (3), and in other expressions that
depend on θ. We suppress this dependency for brevity.

We are concerned with linear mixed modeling for clustered data. Let
i=1,.., s index clusters and write (1) as

Yi = Xiβ + Zibi + εi. (4)

Quantities arising from the marginal distribution of Yi will be referred
to as population average (PA) quantities; those arising from the distribution
of Yi|bi are referred to as conditional or cluster-specific.

In this paper, the effects of model misspecification on the linear mixed
model are analyzed. Two local methods, developed to alleviate the bias
problem of misspecified parametric models, will be presented. Although
the local methods result in less bias, there is a tendency for overfitting. The
model robust mixed model, a hybrid combination of the parametric and local
mixed models, is shown to minimize the integrated mean square error when
compared to the parametric and local methods, while retaining important
features of the data.

This paper is organized as follows. Sections 2 and 3 introduce the non-
parametric and semiparametric (model robust) mixed models. The asymp-
totic results for the model robust mixed model estimate of the mean func-
tion using the theoretically optimal and a data-driven estimate of the mixing
parameter are discussed in Section 4. Section 5 offers a simulation study
to compare approximate integrated mean square errors of the parametric,
nonparametric, and model robust methods; these methods are applied in
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Section 6 to data resulting from monthly wind speed readings taken from
twelve locations in Ireland. Section 7 contains a discussion of our results.

2 THE LOCAL MIXED MODEL

Let Yij denote the jth observation from the ith cluster for j=1,..,ni, i=1,..,s,
and

∑s
i=1 ni = n. The vectors x′

ij and z′ij are vectors from row j of Xi

and Zi, the model matrices associated with cluster i for the fixed and ran-
dom effects, respectively. In this paper, we consider polynomials in a single
regressor, extensions to multiple regressors are straightforward. Our local
models are found by pointwise fitting a weighted version of the Laird-Ware
model. The weights depend on the point of estimation, a bandwidth, and
a kernel function and are constructed with respect to the conditional or
marginal distribution of Yi.

2.1 The Conditional Local Mixed Model

Consider the dth order polynomial mixed model for estimation at x̃0 for the
ith cluster

Yi0 = x̃
′
i0β0 + z̃

′
i0b0 + εi0 (5)

where Yi0 is the response at x̃0 for the ith cluster, x̃′
i0 =

[
1 x̃i0 ...x̃d

i0

]
and

z̃′i0 contains the regressors in x̃0 corresponding to the random effects. The
vectors β0 and b0 are the fixed and random effects parameter vectors at
x̃0, respectively. The vector of random errors, ε0, is assumed to be from a
multivariate Gaussian distribution with zero mean and variance-covariance

matrix K
− 1

2

0 RK
− 1

2

0 , where K
− 1

2

0 is an (n x n) diagonal weight matrix con-
taining the inverse square root of the Nadaraya-Watson (Nadaraya, 1964;
Watson, 1964) weights at x̃0. This weighting scheme is motivated by local
polynomial regression for the fixed effect case. We label this approach the
conditional local mixed model (CLMM) because the weighting is applied to
the variance of Y|b. We will assume that the distances used in the weights
have been standardized appropriately so that the weights will sum to one
across a data set, and that the weights have been assigned without regard
to cluster.

The estimator β̂
C

0 and the predictor b̂0 at the point x̃0 can be found by
incorporating the weight matrix in Henderson’s joint likelihood expression
(1950) and solving the mixed model equations for estimation at x̃0. With
X̃ of full rank, solutions to the equations yield the estimator

β̂
C

0 = (X̃′
V

∗−1
0 X̃)−1

X̃
′
V

∗−1
0 Y (6)
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and the predictor

b̂0 = BZ̃
′
V

∗−1

0
(Y − X̃β̂

C

0 ), (7)

where V∗
0 = K

− 1

2

0 RK
− 1

2

0 + Z̃BZ̃′. The expressions given above are of similar
form to those given by the parametric mixed model except that different
estimates and predictions of the parameter vectors are realized at each x̃0.

The population average fit (PA) at x̃0 is simply

ŶPA,0 = x̃
′
0β̂

C

0 =
∑

k

hC
PA,0,kyk, (8)

where yk is the kth element of Y and where hC
PA,0,k is the kth element of

x̃′
0(X̃

′V
∗−1
0 X̃)−1X̃′V

∗−1
0 . The cluster specific fits (CS) at x̃0 for the ith

cluster (i=1,...,s) are

ŶCS,i,0 = x̃
′
i0β̂

C

0 + z̃
′
i0b̂0. (9)

The cluster specific fits can likewise be expressed as the weighted sum
of squares

ŶCS,i,0 =
∑

k

hC
CS,0,kyk, (10)

with weight hC
CS,0,k, the kth element of x̃′

0(X̃
′V

∗−1
0 X̃)−1X̃′V

∗−1
0 +z̃′i,0BZ̃′V

∗−1
0 −

z̃′i,0BZ̃′V
∗−1
0 X̃(X̃′V

∗−1
0 X̃)−1X̃′V

∗−1
0 , a formula resulting directly from (6)

and (7).

2.2 The Marginal Local Mixed Model

Localization through weighting can also be accomplished by targeting the
marginal variance-covariance matrix. Consider the following model for esti-
mation at x̃0 for the ith cluster

Yi0 = x̃
′
i0β0 + k

− 1

2

i0 z̃
′
i0b0 + εi0 (11)

where Yi0, x̃′
i0, z̃′i0, β0, b0, and εi0 are as defined for CLMM and k

− 1

2

i0 is

the ith element of K
− 1

2

0 . The vector of random errors, ε0, is again assumed
to follow a multivariate Gaussian distribution with zero mean and variance-

covariance matrix K
− 1

2

0 RK
− 1

2

0 . We label this model the marginal local mixed
model (MLMM). As in the conditional model, the local influence of an obser-
vation is directed by its variance. Observations that contribute more (that
is, to have larger weight) to the prediction at x̃0 are considered to have
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smaller variance. The variance, which is transformed to represent the rela-
tive weights of observations, is Var[Yi|bi] in the model of §2.1 and Var[Yi]
here. The multiplicative involvement of the Nadaraya-Watson weights in
(11) accomplish that as

V ar(Y) = K
− 1

2

0 (R + Z̃BZ̃
′)K

− 1

2

0

= K
− 1

2

0 VK
− 1

2

0 = V
∗∗
0 .

The estimator β̂
M

0 at the point x̃0 for the marginal local mixed model is

β̂
M

0 = (X̃′
V

∗∗−1
0 X̃)−1

X̃
′
V

∗∗−1
0 Y, (12)

and the population average fit at x̃0 is

ŶPA,0 = x̃
′
0β̂

M

0 =
∑

k

hM
PA,0,kyk, (13)

with hM
PA,0,k the kth element of x̃′

0(X̃
′V

∗∗−1
0 X̃)−1X̃′V

∗∗−1
0 . Cluster specific

prediction in the marginal model is not appropriate. Model (11) localized
Var[Yi] at the cost of incorrectly representing E[Yi|bi]. The random effects
regressors in the marginal local mixed model are transformed to correctly
weight the marginal variance of the response.

2.3 Bandwidth Selection

The kernel weights used in the conditional and marginal local mixed models
depend upon a bandwidth parameter (h). A natural criterion for selection is
to choose h in order to minimize a function of the squared error of estimation
of mean response to account for bias and variance.

Härdle and Marron (1985) and Härdle (1990) provide a rule for band-
width selection that chooses the asymptotically optimal bandwidth with
respect to a number of criteria, including the average squared error, inte-
grated squared error, and the conditional mean integrated squared error. A
bandwidth is chosen by minimizing an estimate of some appropriate criterion
as the true mean function used in the criteria is unknown.

Plug-in methods, where unknown quantities in the squared error func-
tion are replaced with estimates, are very popular (Ruppert, Sheather, and
Wand, 1995). Rule of thumb selectors offer a simple estimate of the band-
width that is easy to calculate (Fan and Gijbels, 1995; Härdle and Marron,
1995).

We prefer bandwidth estimators based on cross-validation (Craven and
Wahba, 1979), in particular penalized, “leave-one-out” statistics.

5



2.3.1 PRESS

The prediction error sum of squares, or PRESS statistic (Allen, 1974), is
defined in the usual regression setting as

PRESS =

n∑

i=1

(Yi − Ŷi,−i)
2, (14)

where Yi is the ith observation and Ŷi,−i is the estimate of the regression
function at x̃i with the ith data point removed. The bandwidth selected is
the value h that minimizes the PRESS statistic.

In the mixed effects model with clustered data, the notion of “leave-one-
out” extends to removal of entire clusters, as clusters represent uncorrelated
units. Cluster deletion formulas for the parametric mixed model are given
by Hurtado-Rodriguez (1993) and Hilden-Minton (1995). The estimators

for CLMM and MLMM at x̃0 with the ith cluster deleted, denoted by β̂
C

0,−i

and β̂
M

0,−i, respectively, are

β̂
C

0,−i = β̂
C

0 − (X̃′
V

∗−1
0 X̃)−1

X̃′V
∗−1
0 Uφ̂

C

0,−i (15)

β̂
M

0,−i = β̂
M

0 − (X̃′
V

∗∗−1
0 X̃)−1

X̃
′
V

∗∗−1
0 Uφ̂

M

0,−i, (16)

where U is the (n x ni) matrix that contains the identity matrix for the ith

cluster and zeros elsewhere, and

φ̂
C

0,−i= (U′P
∗
U)−1

U′P
∗
Y,

φ̂
M

0,−i= (U′P
∗∗

U)−1
U′P

∗∗
Y,

P∗= V
∗−1
0 −V

∗−1
0 X̃(X̃′V

∗−1

0 X̃)
−1

X̃′V
∗−1

0 ,

P∗∗= V
∗∗−1
0 −V

∗∗−1
0 X̃(X̃′V

∗∗−1

0 X̃)
−1

X̃′V
∗∗−1

0 .

Then the population average fit at x̃0 with the ith cluster deleted is

ŶPA,0,−i = x̃
′
0β̂0,−i, (17)
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where β̂0,−i equals β̂
C

0,−i and β̂
M

0,−i for CLMM and MLMM, respectively.

The BLUP b̂0,−i of the ith cluster at x̃0 in the CLMM is equal to zero1, so
that cluster specific predictions reduce to population average estimation for
cluster deletion.

2.3.2 PRESS**

We adopt here to the mixed model scenario a penalized version of PRESS,
proposed in the context of fixed effects models for uncorrelated data by
Mays, Birch, and Starnes (2001). For the linear mixed model, PRESS** is
defined as

PRESS∗∗ =
PRESS

n − trace(H) + (n − d′)(SSEmax−SSEh

SSEmax−SSEȳ
)
, (18)

where d′ is the number of fixed effects parameters in the local mixed model
and

H = H
CLMM =





x̃′
1(X̃

′V
∗−1
1 X̃)−1X̃′V

∗−1
1

x̃′
2(X̃

′V
∗−1
2 X̃)−1X̃′V

∗−1
2

:

x̃′
n(X̃′V∗−1

n X̃)−1X̃′V∗−1
n





for the conditional local mixed model and

H = H
MLMM =





x̃′
1(X̃

′V
∗∗−1
1 X̃)−1X̃′V

∗∗−1
1

x̃′
2(X̃

′V
∗∗−1
2 X̃)−1X̃′V

∗∗−1
2

:

x̃′
n(X̃′V∗∗−1

n X̃)−1X̃′V∗∗−1
n





for the marginal local mixed model. These matrices are the local smoother
matrices for the population average. The term SSEmax is the sum of squared
deviations of the response and the local fit that assigns a constant weight
to each response. This would result as h → ∞ and represents the worst
possible fit using the nonparametric method. The sum of squares SSEȳ is
the accumulative across the regressor locations of the sum of the squared
deviations of the responses around the mean response and represents the sum
of squares error as h →0 for the population average model. The expression
SSEh is the sum of squared deviations of the response and the local fit

1Removal of some, but not all, of the observations in a cluster results in a BLUP not
equal to zero for that cluster. See Hurtado-Rodriguez (1993) for formulas.
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using a specific value of the bandwidth h. As h →0, SSEh → 0 for CLMM
and SSEh → SSEȳ for MLMM. Cluster specific and population average fits
are used in the sum of squared calculations for PRESS** for CLMM and
MLMM, respectively.

The denominator in the PRESS** statistic functions as the penalty term,
simultaneously providing protection against choosing h too large or too
small. The term n− trace(H), where H equals either HCLMM or HMLMM ,
penalizes small bandwidths as this term approaches 0 as h →0 and n − d′

as h → ∞. The second term in the denominator ((n− d′) multiplied by the
sum of squares ratio) protects against large bandwidths, as the second term
approaches n − d′ as h → 0 and 0 as h → ∞.

3 THE SEMIPARAMETRIC MIXED MODEL

We assume that the user has some knowledge about the underlying model
from which the data have been generated, but the model fails over a portion
of the data; it has been misspecified in functional form. Relying on a non-
parametric model entirely results in loss of information about the model.
The nonparametric model also has a tendency to produce highly variable
fits. A combination of fits may be advantageous; a nonparametric portion
“corrects” areas of poor parametric estimation while retaining the informa-
tion about the true model contained in the parametric model.

Semiparametric models have been proposed in the literature for the fixed
effects model. Partial linear regression (Speckman (1988)) assumes that the
response could be modeled as a linear predictor plus some smooth unknown
function f dependent on the same set of regressors. Estimates of the param-
eters in the linear predictor are obtained by regression on partial residuals,
and the estimate of f is a nonparametric fit to the residuals.

Burman and Chaudhuri (1992), Einsporn and Birch (1993), and Mays,
Birch, and Einsporn (2000) developed a semiparametric method termed
Model Robust Regression 1 (MRR1) by Mays, Birch, and Einsporn (2000).
The MRR1 fit is a convex combination

Ŷ
MRR1 = (1 − λ)ŶP + λŶ

NP , (19)

where ŶP and ŶNP are the parametric and nonparametric fits, respectively.
The mixing parameter λ ∈ [0, 1] determines the proportion of the nonpara-
metric fit that contributes to the model robust fit. For a correctly specified
parametric model, λ will be zero and the MRR1 model reduces to the para-
metric model; for parametric models that are grossly misspecified, λ will be
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one or close to one and the MRR1 model is the same or nearly equal to
the nonparametric model. Simulation results in Mays, Birch, and Starnes
(2001) show that MRR1 has smaller average mean square error of fit than
separate parametric and nonparametric fits under low to moderate model
misspecification. Under no model misspecification, MRR1 is equivalent, or
nearly so, to the parametric fit. Under a high degree of misspecification
MRR1 is equivalent, or nearly so, to the nonparametric fit.

The rationale is that this convex combination should take advantage of
the low variance and bias of the parametric and local fits, respectively, to
decrease mean square error. A simulation study in section 5 investigates
this claim for the mixed model.

Semiparametric modeling can be extended to the mixed model setting.
The proposed Mixed Model Robust Regression (MMRR) fit is an adaptation
of the MRR1 fit for use with the mixel model. Specifically, the MMRR fit
is

Ŷ
MMRR = (1 − λ)ŶP + λŶ

NP , (20)

where ŶP is the fit from the parametric linear mixed model and ŶNP is a
local mixed model fit. The mixing parameter is an element between 0 and
1. A value of λ = 1 produces an MMRR fit equal to the nonparametric
fit; λ = 0 results in an MMRR fit equal to the parametric fit. Values of λ

between 0 and 1 produce MMRR fits that are convex combinations of the
two fits.

As in the parametric and local models, the MMRR fit can be population
average or cluster specific. There are two population average fits for MMRR.
One combines the population average fit for the parametric and the condi-
tional local mixed model; the second combines the fit for the parametric and
the marginal local mixed model. The cluster specific fit for MMRR utilizes
the cluster specific parametric fit in combination with the cluster specific
conditional local mixed model fit.

The mixing parameter λ measures the degree of parametric model mis-
specification and must be estimated from the data. Notice that (20) can be
written as

(ŶMMRR − Ŷ
P ) = λ(ŶNP − Ŷ

P ) (21)

yielding the least square estimate

λ̂ =
(ŶNP − ŶP )′(ŶMMRR − ŶP )

(ŶNP − ŶP )′(ŶNP − ŶP )
. (22)

Thus, λ̂ is an estimate of the slope parameter in a no-intercept model with
response (ŶMMRR − ŶP ) and explanatory variable (ŶNP − ŶP ). For the
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uncorrelated, fixed effects model, Burman and Chaudhuri (1992) and Mays,
Birch, and Starnes (2001) found the optimal data driven estimate of the
mixing parameter, an estimate of the value which minimizes the distance
between the model robust estimate and the true regression function, as

λ̂ =
(ŶNP

i,−i − ŶP
i,−i)

′(Y − ŶP )

(ŶNP − ŶP )′(ŶNP − ŶP )
. (23)

ŶP
i,−i and ŶNP

i,−i are the parametric and nonparametric estimates of the mean
response at xi computed without the point (xi, yi). In the cluster correlated
mixed model, ŶP

i,−i and ŶNP
i,−i in (23) are replaced with the parametric and

nonparametric fits for the ith cluster with the ith cluster removed. Burman
and Chaudhuri (1992) had suggested the substitution of ŶP

i,−i and ŶNP
i,−i as

a precaution against favoring the nonparametric fit. Notice that ŶMMRR

is unknown and depends on λ. But ŶMMRR approaches E(Y) as the sam-
ple size increases, so Y is used in place of ŶMMRR in the estimate. The
appendix provides the asymptotic theory for the optimal estimators of λ.

The conclusion to the debate over the use of population average ver-
sus cluster specific fits for the mixing parameter will be the same as the
conclusion in bandwidth selection. For the conditional local mixed model,
emphasis is placed upon cluster specific estimation. Thus, the fits used in
choosing λ̂ for MMRR estimation using the conditional local mixed model
will be cluster specific. The conditional local mixed model also yields a
population average fit. The λ̂ used in computing the population average
MMRR fit using the CLMM will be the same λ̂ used in computing the clus-
ter specific MMRR fits using the CLMM. Thus, the mean square error for
the population average MMRR estimate will not be optimal when using the
CLMM population average fit. However, because we are primarily interested
in cluster specific fits for the CLMM population average fit, λ̂ based on clus-
ter specific fits will be used for all mixed model robust regression estimates
that use the conditional local mixed model. Population average fits are used
in the estimate of λ for MMRR using the marginal local mixed model, as the
marginal local mixed model is only appropriate for the population average.

Model robust regression has been extended to a number of scenarios, in-
cluding quantal data (Nottingham and Birch, 2000), dual modeling (Robin-
son and Birch, 2000), outlier resistance modeling (Assaid and Birch, 2000)
and generalized estimating equations (Clark, 2002).
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4 THEORETICAL BIAS, VARIANCE, AND MSE
FORMULAS

The mean square prediction error when using random variables ŷ0 to predict
the constant function g(x0) is

E(ŷ0 − g(x0))
2 = V ar(ŷ0) + [Bias(ŷ0)]

2. (24)

In our context ŷ0 is the fit at the point x0 and g(x0) is the true mean function
evaluated at x0. Thus, the mean square error depends upon the bias and
the variance of the fit. Formulas for the bias and variance can be obtained
for the parametric, local, and hence the model robust procedures.

In what follows, it is assumed that V, B, and R are known, and that
the bandwidth and mixing parameter are fixed. Complete derivations of the
following results may be found in Waterman (2002). For population average
estimation evaluated at the design points, the bias formula can be written
as

Bias(ŶPA) = −(I − H)(Xβ + f) (25)

where I is the identity matrix, X is the true fixed effects model matrix
stacked by cluster, β is the true fixed effects parameter vector, f = E(Y)−
Xβ is the misspecified portion, and the smoother matrix H equals

H
P
PA = X(X′

V
−1

X)−1
X

′
V

−1 (26)

for the parametric mixed model,

H
C
PA =





x̃′
1(X̃

′V
∗−1
1 X̃)−1X̃′V

∗−1
1

x̃′
2(X̃

′V
∗−1
2 X̃)−1X̃′V

∗−1
2

:

x̃′
n(X̃′V∗−1

n X̃)−1X̃′V∗−1
n



 (27)

for the conditional local mixed model, and

H
M
PA =





x̃′
1(X̃

′V
∗∗−1
1 X̃)−1X̃′V

∗∗−1
1

x̃′
2(X̃

′V
∗∗−1
2 X̃)−1X̃′V

∗∗−1
2

:

x̃′
n(X̃′V∗∗−1

n X̃)−1X̃′V∗∗−1
n



 (28)

for the marginal local mixed model. The row vector x̃′
k is the kth row of

X̃. It can be shown that the bias formula for the parametric linear mixed
model simplifies to −(I− HP

PA)f .
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The variance-covariance matrices for population average estimation in
the parametric, CLMM, and MLMM models are

V ar(ŶP
PA) = H

P
PAVH

P
PA

′
, (29)

V ar(ŶC
PA) = H

C
PAVH

C
PA

′
, (30)

V ar(ŶM
PA) = H

M
PAVH

M
PA

′
. (31)

The parametric variance-covariance matrix for population average esti-
mation can be simplified to HP

PAV. The population average mean square
error at the design points is then found by squaring the bias terms, adding
the sum of the squared bias terms to the sum of the variances of the fits
(i.e., the trace of the variance-covariance matrix), and then dividing by the
number of design points.

For cluster specific prediction, the bias and variance formulas are slightly
different now that the random effects are included. We first consider cluster
specific mean square prediction error formulas by conditioning on the ran-
dom effects for a fixed true mean function. The cluster specific bias formula
for estimation at the design points is

Bias(ŶCS|b) = −(I − H)(Xβ + Zb + f) (32)

where Z is the true random effects model matrix, b is the true vector of
random effects, and the cluster specific parametric and CLMM smoother
matrices are

H
P
CS = (I − ZBZ

′
V

−1)X(X′
V

−1
X)−1

X
′
V

−1 + ZBZ
′
V

−1 (33)

H
C
CS =





(i′1 − z̃′1B̃Z̃′V
∗−1
1 )X̃(X̃′V

∗−1
1 X̃)−1X̃′V

∗−1
1 + z̃′1B̃Z̃′V

∗−1
1

(i′2 − z̃′2B̃Z̃′V
∗−1
2 )X̃(X̃′V

∗−1
2 X̃)−1X̃′V

∗−1
2 + z̃′2B̃Z̃′V

∗−1
2

:

(i′n − z̃′nB̃Z̃′V∗−1
n )X̃(X̃′V∗−1

n X̃)−1X̃′V∗−1
n + z̃′nB̃Z̃′V∗−1

n



 , (34)

respectively. The row vectors i′k and z̃′k are the kth rows of the identity matrix
and Z̃. The variance-covariance matrices for cluster specific prediction with
fixed true mean function using the parametric and CLMM models are

V ar(ŶP
CS |b) = H

P
CSRH

P
CS

′
(35)
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V ar(ŶC
CS |b) = H

C
CSRH

C
CS

′
. (36)

The cluster specific mean square error calculations at the design points is
analogous to the population average mean square error calculations at the
design points.

The bias and variance formulas given above can be used to find the
MSE formulas for mixed model robust regression. Three bias and variance
formulas must be developed - for the MMRR population average based on
the conditional local mixed model, the MMRR population average based on
the marginal local mixed model, and the MMRR cluster specific fit. The
bias formulas for mixed model robust regression are

Bias(ŶMMRR,C
PA ) = −λ(I − H

C
PA)Xβ − (I − H

MMRR,C
PA )f (37)

Bias(ŶMMRR,M
PA ) = −λ(I − H

M
PA)Xβ − (I − H

MMRR,M
PA )f (38)

Bias(ŶMMRR
CS |b) = −λ(I − H

C
CS)Xβ − (I − H

MMRR
CS )(Zb + f), (39)

where
H

MMRR,C
PA = (1 − λ)HP

PA + λH
C
PA, (40)

H
MMRR,M
PA = (1 − λ)HP

PA + λH
M
PA, (41)

H
MMRR
CS = (1 − λ)HP

CS + λH
C
CS (42)

are the mixed model robust regression smoother matrices for population av-
erage (using CLMM and MLMM) estimation and cluster specific prediction.
The mixing parameter appears in the bias expression in two places - as the
multiplier of the Xβ term and in the MMRR smoother matrices.

The variance expressions for the three model robust methods are

V ar(ŶMMRR,C
PA ) = λH

MMRR,C
PA VH

C
PA

′
+ (1 − λ)HMMRR,C

PA VH
P
PA

′
, (43)

V ar(ŶMMRR,M
PA ) = λH

MMRR,M
PA VH

M
PA

′
+ (1 − λ)HMMRR,M

PA VH
P
PA

′
, (44)

V ar(ŶMMRR
CS ) = λH

MMRR
CS RH

C
CS

′
+ (1 − λ)HMMRR

CS RH
P
CS

′
. (45)

The mean square errors for the model robust fits can be found in the same
fashion as the parametric and nonparametric models.
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5 SIMULATION STUDY

A Monte Carlo simulation study was conducted with data generated from
the cluster specific model

Yij = (2+bi1)(Xj −5.5)2 +(5+bi2)Xj +10γ

[
sin

(
π(Xj − 1)

2.25

)]
+εij , (46)

where Yij is the simulated response for the ith cluster at Xj . The regressor
takes on integer values from one to ten, inclusive.2 The random effects, bi1

and bi2, are generated independently from normal distributions with mean
zero and variance 0.50.

Three variance-covariance structures for the random errors εij were con-
sidered. The first variance-covariance structure was independence with the
variance of the errors equal to 16. First-order autoregressive models (AR(1))
with ρ=0.20 and ρ=0.80 were also used with σ2=16.

The user’s model is

Yij = (2 + bi1)(Xj − 5.5)2 + (5 + bi2)Xj + εij. (47)

The true model is given in (56); the trigonometric component then serves as
the misspecification. Values of γ equal to 0 (no misspecification), 0.25, 0.50,
0.75, and 1.0 will be used in the study. A plot of the population average
models versus γ is given in Figure 1. The smooth parabola, indicated by
the dashed line, occurs with no model misspecification and the solid curve
represents the most misspecification at γ=1. The large disparity between
the γ=0 and γ=1 models should be reflected in the MSE results from the
simulation study.

It is assumed that there is no parametric misspecification in the variance-
covariance structure. That is, if the random errors are generated from an
AR(1) variance-covariance structure, the parametric model is the quadratic
model in (47) with an AR(1) structure for R.

The local model used in the analysis is the local linear mixed model
(CLMM or MLMM) with a random intercept:

Yi0 = β00 + x̃0β10 + bi0 + εi0. (48)

Our extensive Monte Carlo studies indicate that PRESS provides the
best mean square error of fit results when using MLMM, while PRESS**

2The model studied here is similar to the model of Mays, Birch, and Starnes (2001),
except that in this work the cluster correlated, random coefficient case is considered.

14



Figure 1: Plot of Population Average Underlying Models (where γ is the
misspecification parameter
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provides best results when using CLMM. Consequently, the bandwidth se-
lectors used in the study were PRESS for MLMM population average es-
timation (PA MLMM and PA MMRR MLMM) and PRESS** for CLMM
population average and cluster specific estimation (PA CLMM, PA MMRR
CLMM, CS CLMM, and CS MMRR CLMM). A golden section search was
performed over the bandwidth range [0.05,0.30]. These values were selected
to minimize the distance covered by the search method as the bandwidths
chosen in every scenario fell within these bounds. The estimate of the mixing
parameter was found using formula (23). Because no bounds are imposed
by this formula, the estimate of the mixing parameter was set to zero or one
if the solution to (23) was negative or greater than one, respectively.

Both the bandwidth and the mixing parameter were found by summing
over the design points. Using the bandwidth and mixing parameter for a
given data set, the integrated mean square error of fit was approximated
by calculating the mean square error at 46 points (1 to 10 by 0.20). The
mean square errors were calculated for the parametric (population average
and cluster specific), CLMM (population average and cluster specific), the
MLMM (population average), and the mixed model robust regression models
(population average using CLMM, population average using MLMM, and
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cluster specific using CLMM).
We are interested in the approximate integrated MSE (INTMSE) as a

function of cluster size, correlation, and γ. To keep the number of scenarios
manageable, s=5 and s=20 clusters per data set are examined for different
variance-covariance structures and degrees of misspecification.

Since the data are correlated and parameter estimation is an iterative
process, fitting a large number of models requires substantial computing
resources. To examine the practically feasible number of needed simula-
tion runs that also provided sufficient precision of Monte-Carlo averages,
we examined the standard errors of Monte-Carlo mean square errors. As
the number of runs increased, the standard error decreased and leveled off
around 250 runs. We decided on 250 simulation runs, attempting to balance
between computing time and Monte-Carlo variability.

5.1 Varying Cluster Size

This section presents results for the model in (46) under the assumption of
within-cluster independence. It is expected that as the number of clusters
increases, the INTMSE for the local population average should decrease
since more observations at a given x̃0 will result in estimates that will be
more precise. For small bandwidths, this would mean that non-negligible
weight would be given to those observations at x̃0 only, resulting in a local
population average fit that connects the mean response at each value of the
regressor. The INTMSE values for the local cluster specific fits should be
unaffected by the addition of clusters.

In this work, five clusters will be considered our “small” number of clus-
ters, and twenty clusters our “large” number of clusters. Tables 1 and 2
contain the simulated INTMSE values summed over clusters using an in-
dependence within-cluster variance structure over regressor location/cluster
size combination.3 Tables 1 and 2 suggest that MMRR-MLMM should be
used for population average estimation, while MMRR-CLMM be utilized for
cluster specific prediction. These model robust procedures clearly minimize
the INTMSE over the entire range of γ. For example, for the PA fit, we
note that MMRR-MLMM is very close to the optimal parametric method
(when γ=0) in INTMSE for very small values of γ, is very close to MLMM

3Columns 2 through 6 contain population average results, while columns 7 through 9
contain cluster specific results. A population average and a cluster specific INTMSE are
highlighted in each row; this bolded value is the minimum population average and cluster
specific INTMSE for the given γ value. MLMM and CLMM (and the corresponding model
robust procedures) use PRESS and PRESS**, respectively, as bandwidth selectors.
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for very large values of γ, and is superior to both for intermediate vales of
γ. We note similar results for the CS fit and the MMRR-CLMM technique.
MMRR-MLMM and MMRR-CLMM are robust to model misspecification
for fitting the PA and CS curves, respectively.

A finer grid between γ=0 and γ=0.30 provides a range of values where
parametric, local, and model robust procedures are optimal, information
useful to determine the degree of misspecification where model robust pro-
cedures would be the most beneficial.

Table 1. Mixed Model Robust Regression using Independence
(10 design points and 5 clusters)

PA PA PA PA PA CS CS CS
γ Parm. CLMM MLMM MMRR MMRR Parm. CLMM MMRR

CLMM MLMM CLMM

0.00 13.83 16.09 15.76 13.87 14.00 2.65 7.54 2.73
0.05 13.95 16.10 15.81 13.96 14.08 2.77 7.55 2.84
0.10 14.30 16.15 15.82 14.27 14.36 3.12 7.62 3.16
0.15 14.88 16.19 15.87 14.74 14.78 3.71 7.73 3.66

0.20 15.70 16.25 15.96 15.31 15.23 4.55 7.88 4.29

0.25 16.75 16.36 16.03 15.94 15.60 5.62 8.06 4.99

0.30 18.03 16.45 16.03 16.54 15.87 6.93 8.28 5.73

0.50 25.51 16.77 16.19 18.28 16.33 14.63 9.20 8.35

0.75 40.11 17.26 16.57 19.35 16.69 29.87 10.48 10.67
1.00 60.56 17.69 17.14 20.33 17.23 51.35 11.86 12.68

Table 2. Mixed Model Robust Regression using Independence
(10 design points and 20 clusters)

PA PA PA PA PA CS CS CS
γ Parm. CLMM MLMM MMRR MMRR Parm. CLMM MMRR

CLMM MLMM CLMM

0.00 3.37 4.16 4.08 3.38 3.43 2.49 9.56 2.49

0.05 3.49 4.16 4.08 3.49 3.56 2.60 9.62 2.61
0.10 3.84 4.17 4.09 3.81 3.79 2.95 9.79 2.94

0.15 4.43 4.17 4.11 4.28 3.97 3.54 10.17 3.44

0.20 5.24 4.16 4.12 4.84 4.08 4.36 10.51 4.08

0.25 6.30 4.19 4.16 5.42 4.16 5.42 10.73 4.81

0.30 7.58 4.22 4.19 5.96 4.22 6.72 10.80 5.56

0.50 15.06 4.48 4.42 7.50 4.45 14.35 11.04 8.40

0.75 29.67 4.92 4.84 8.96 4.93 29.57 12.84 11.69

1.00 50.12 5.47 5.45 10.52 5.51 51.42 14.24 14.64
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A cross-over point is defined as the value of the misspecification pa-
rameter at which the minimum INTMSE value switches from parametric to
model robust estimation or from model robust to local estimation. For both
population average and cluster specific prediction, the minimum INTMSE
value changes from the parametric to the model robust method at a γ value
between 0.05 and 0.10. The second cross-over point (from model robust
to local estimation) occurs much earlier for the population average for both
cluster sizes. The second population average cross-over point occurs between
γ=0.20 and γ=0.30, whereas the second cluster specific cross-over point oc-
curs for large misspecification– a γ value between 0.75 and 1.0. In addition,
the cross-over occurs earlier for larger cluster sizes, a result consistent with
Clark (2002).

5.2 AR(1) Correlation Structure

The INTMSE values for the correlated data cases appear in Tables 3-6 for
s=5 and s=20. The pattern of the cross-over points in γ across the covari-
ance structures appears to be similar. This pattern suggests that popula-
tion average mixed model robust regression outperforms MLMM for small
amounts of model misspecification, whereas cluster specific mixed model ro-
bust regression generally works well for all levels of misspecification, and is
outperformed by CLMM only at the extreme cases, as expected.

Table 3. Simulated INTMSE values using AR(1) with ρ=0.20
(10 design points and 5 clusters)

PA PA PA PA PA CS CS CS
γ Parm. CLMM MLMM MMRR MMRR Parm. CLMM MMRR

CLMM MLMM CLMM

0.00 13.77 16.22 15.71 13.79 13.91 3.74 9.04 3.77
0.25 16.73 16.38 15.94 15.99 15.57 6.74 9.55 6.05

0.50 25.53 16.77 16.09 18.69 16.28 16.00 10.65 9.56

0.75 40.18 17.18 16.43 20.15 16.59 31.81 11.82 12.12
1.00 60.99 17.57 16.99 21.30 17.14 54.01 13.05 14.34
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Table 4. Simulated INTMSE values using AR(1) with ρ=0.20
(10 design points and 20 clusters)

PA PA PA PA PA CS CS CS
γ Parm. CLMM MLMM MMRR MMRR Parm. CLMM MMRR

CLMM MLMM CLMM

0.00 3.42 4.06 3.97 3.42 3.46 3.34 10.72 3.34

0.25 6.34 4.09 4.06 5.42 4.08 6.34 11.80 5.66

0.50 15.12 4.36 4.31 7.66 4.36 15.74 12.20 9.36

0.75 29.77 4.77 4.72 9.72 4.81 32.31 13.98 13.04

1.00 50.28 5.33 5.31 11.88 5.37 55.81 15.03 16.30

Table 5. Simulated INTMSE values using AR(1) with ρ=0.80
(10 design points and 5 clusters)

PA PA PA PA PA CS CS CS
γ Parm. CLMM MLMM MMRR MMRR Parm. CLMM MMRR

CLMM MLMM CLMM

0.00 14.26 17.07 16.31 14.44 14.80 6.48 14.54 6.60
0.25 17.30 17.21 16.33 16.97 16.29 9.41 14.80 9.14

0.50 26.24 17.51 16.41 19.62 16.83 18.60 15.35 13.11

0.75 40.96 17.71 17.01 20.44 17.26 34.04 15.90 15.38

1.00 61.50 18.06 17.61 21.45 17.87 55.93 16.52 17.13

Table 6. Simulated INTMSE values using AR(1) with ρ=0.80
(10 design points and 20 clusters)

PA PA PA PA PA CS CS CS
γ Parm. CLMM MLMM MMRR MMRR Parm. CLMM MMRR

CLMM MLMM CLMM

0.00 3.68 4.36 4.25 3.68 3.75 5.78 14.67 5.78

0.25 6.63 4.38 4.32 5.62 4.33 8.85 15.04 8.40

0.50 15.46 4.64 4.57 7.29 4.62 18.13 15.39 12.28

0.75 30.13 5.01 4.99 8.78 5.03 33.89 16.37 15.09

1.00 50.66 5.62 5.58 10.72 5.60 56.55 17.00 17.56

Notice that the population average MLMM and cluster specific CLMM
methods robust models are extremely competitive. For γ=0, the parametric
method should have the smallest INTMSE. The model robust procedures
obtain INTMSE values very close to the parametric INTMSE values. For
γ=1, the local methods should have the smallest INTMSE, and the model
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robust procedures obtain INTMSE values very close to the local values.
As γ increases from zero to one, the INTMSE values for the mixed model
robust procedures are either the minimum value or are close in value to the
“winning” INTMSE values.

There are some key differences between the independence and correlated
cases. On average, the INTMSE values increase as the correlation increases.
Consider, for example, the case γ=0, where INTMSE reduces to the ap-
proximate integrated variance of fit when conditioned on the values of the
random effects. If the same size n remains fixed while ρ increases, the effec-
tive sample size decreases. Thus, as the correlation increases, the variance
of the fits, and hence the mean square error, must increase.

In virtually all of the cases where s=5, MLMM outperformed CLMM
when the local mixed model was the method that minimized mean square
error using PRESS as the bandwidth selector. For s=20, MLMM appears
to have the smallest INTMSE value on average over differing amounts of γ.
As the use of PRESS for choosing bandwidth resulted in smaller INTMSE
values for the population average, this suggests that the marginal local mixed
model is superior to the conditional local mixed model for population average
estimation.

It is clear from the above tables that MMRR-CLMM is superior in clus-
ter specific prediction when measured by INTMSE. For population average
estimation, MMRR-MLMM does not achieve the minimum INTMSE value,
but its INTMSE value is very close to the minimum value across all values of
γ, s, and ρ. Moreover, when the model is correctly specified, MMRR-MLMM
always beats MLMM, the preferred population average local method.

5.2.1 Estimation of ρ

One concern in the correlated data case was whether the misspecification
term influenced the estimate of ρ. As the estimate of ρ is determined by
REML or ML, it is very difficult to determine the expected value of the
correlation estimate under model misspecification; such estimates, however,
can be examined by varying model misspecification in the previous Monte-
Carlo study. Five hundred data sets were generated for different values of
γ, and the average estimates of ρ from the parametric analysis over the
five hundred data sets were calculated. The data were generated from an
AR(1) process using ρ = 0, ρ = 0.10, ρ = 0.20, ρ = 0.33, ρ = 0.80, and
ρ = 0.90. The simulation used 10 design points and 20 clusters using REML
estimation (Table 7).
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Table 7. Average Estimate of ρ from Parametric Estimation
(10 design points, 20 clusters, and 500 iterations)

γ ρ = 0 ρ = 0.10 ρ = 0.20 ρ = 0.33 ρ = 0.80 ρ = 0.90

0.00 -0.00 0.09 0.19 0.32 0.79 0.89
0.10 0.01 0.10 0.20 0.32 0.76 0.86
0.20 0.05 0.13 0.21 0.32 0.69 0.76
0.25 0.07 0.14 0.22 0.32 0.65 0.71
0.30 0.09 0.16 0.23 0.32 0.61 0.66
0.40 0.13 0.19 0.25 0.32 0.55 0.57
0.50 0.16 0.21 0.26 0.32 0.49 0.50
0.60 0.19 0.23 0.27 0.32 0.45 0.46
0.70 0.21 0.24 0.28 0.32 0.42 0.43
0.75 0.22 0.25 0.28 0.31 0.41 0.41
0.80 0.23 0.25 0.28 0.31 0.40 0.40
0.90 0.24 0.26 0.28 0.31 0.38 0.38
1.00 0.24 0.26 0.28 0.30 0.36 0.36

When the model is correctly specified (γ=0) the estimate of ρ is nearly
unbiased. Model misspecification unduly influences the estimate of ρ, as
the results indicate that highly (weakly) correlated data appear less (more)
correlated for large model misspecification. The value ρ=1/3 provides esti-
mates close to the true value, regardless of γ. This may be an indication
that the estimates are converging to a value close to 1/3. We see that model
misspecification affects the parametric model’s ability to fit as well as its
ability to estimate ρ in an AR(1) model.

5.3 Simulated Average and Optimal Bandwidths and Mixing
Parameters

Tables 8 and 9 contain the simulated optimal bandwidth and mixing param-
eter results, respectively, over varying amounts of misspecification, cluster
size, correlation structure, and local model. The simulated optimal band-
width for a given level of misspecification and correlation structure is found
by calculating the average mean square error (AVEMSE), a discrete approx-
imation to the integrated mean square error, for each simulated data set over
a variety of bandwidths. The AVEMSE values are then averaged over the
number of simulated data sets for each bandwidth value, with the optimal
bandwidth (hopt) being the value with the smallest average AVEMSE value
for the specified levels of γ and ρ. In a similar fashion, the simulated optimal
mixing parameter (λopt) can be found by using a fine grid of λ values and
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calculating the average AVEMSE values as above. The simulated optimal
mixing parameter is the value of λ corresponding to the smallest AVEMSE
value for the given γ and ρ.

Table 8. Simulated Optimal Bandwidth hopt

correlation model s γ=0 γ=0.25 γ=0.5 γ=0.75 γ=1

Independence CLMM 5 0.12 0.11 0.10 0.09 0.08
AR(1), ρ=0.20 CLMM 5 0.12 0.11 0.10 0.09 0.08
AR(1), ρ=0.80 CLMM 5 0.10 0.09 0.08 0.07 0.07

Independence MLMM 5 0.19 0.09 0.07 0.07 0.06
AR(1), ρ=0.20 MLMM 5 0.19 0.08 0.07 0.06 0.06
AR(1), ρ=0.80 MLMM 5 0.06 0.06 0.05 0.05 0.05

Independence CLMM 20 0.12 0.11 0.10 0.09 0.08
AR(1), ρ=0.20 CLMM 20 0.12 0.11 0.10 0.09 0.08
AR(1), ρ=0.80 CLMM 20 0.10 0.09 0.08 0.07 0.07

Independence MLMM 20 0.06 0.06 0.05 0.05 0.05
AR(1), ρ=0.20 MLMM 20 0.07 0.06 0.06 0.05 0.05
AR(1), ρ=0.80 MLMM 20 0.05 0.05 0.05 0.05 0.05

Table 9. Simulated Optimal Mixing Parameter λopt

correlation model s γ=0 γ=0.25 γ=0.5 γ=0.75 γ=1

Independence CLMM 5 0.04 0.31 0.70 0.90 0.96
AR(1), ρ=0.20 CLMM 5 0.08 0.31 0.68 0.88 0.95
AR(1), ρ=0.80 CLMM 5 0.14 0.26 0.60 0.79 0.90

Independence MLMM 5 0.00 0.58 0.88 0.99 0.98
AR(1), ρ=0.20 MLMM 5 0.05 0.61 0.90 0.95 0.98
AR(1), ρ=0.80 MLMM 5 0.00 0.63 0.89 0.95 0.98

Independence CLMM 20 0.01 0.30 0.71 0.91 0.97
AR(1), ρ=0.20 CLMM 20 0.02 0.28 0.68 0.89 0.95
AR(1), ρ=0.80 CLMM 20 0.05 0.21 0.58 0.78 0.89

Independence MLMM 20 0.00 0.83 0.95 0.98 0.99
AR(1), ρ=0.20 MLMM 20 0.00 0.84 0.97 0.98 0.99
AR(1), ρ=0.80 MLMM 20 0.05 0.87 0.97 0.99 1.00
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Table 10. Average Bandwidth from Simulations h̄
selector model ρ s γ=0 γ=0.25 γ=0.5 γ=0.75 γ=1

PRESS CLMM Indep. 5 0.09 0.09 0.07 0.07 0.06
PRESS MLMM Indep. 5 0.13 0.11 0.08 0.06 0.06
PRESS CLMM Indep. 20 0.07 0.07 0.05 0.05 0.05
PRESS MLMM Indep. 20 0.08 0.06 0.06 0.05 0.05

PRESS** CLMM Indep. 5 0.11 0.11 0.09 0.08 0.07
PRESS** MLMM Indep. 5 0.19 0.17 0.13 0.10 0.08
PRESS** CLMM Indep. 20 0.07 0.07 0.07 0.06 0.05
PRESS** MLMM Indep. 20 0.13 0.10 0.07 0.07 0.06

PRESS CLMM 0.20 5 0.09 0.08 0.07 0.06 0.06
PRESS MLMM 0.20 5 0.12 0.10 0.08 0.07 0.06
PRESS CLMM 0.20 20 0.07 0.06 0.05 0.05 0.05
PRESS MLMM 0.20 20 0.07 0.07 0.05 0.05 0.05

PRESS** CLMM 0.20 5 0.12 0.11 0.09 0.08 0.07
PRESS** MLMM 0.20 5 0.19 0.18 0.13 0.10 0.08
PRESS** CLMM 0.20 20 0.08 0.07 0.07 0.05 0.05
PRESS** MLMM 0.20 20 0.13 0.09 0.07 0.07 0.05

PRESS CLMM 0.80 5 0.06 0.06 0.05 0.05 0.05
PRESS MLMM 0.80 5 0.07 0.06 0.05 0.05 0.05
PRESS CLMM 0.80 20 0.05 0.05 0.05 0.05 0.05
PRESS MLMM 0.80 20 0.05 0.05 0.05 0.05 0.05

PRESS** CLMM 0.80 5 0.12 0.11 0.09 0.08 0.07
PRESS** MLMM 0.80 5 0.18 0.17 0.13 0.09 0.08
PRESS** CLMM 0.80 20 0.08 0.07 0.06 0.05 0.05
PRESS** MLMM 0.80 20 0.14 0.09 0.07 0.06 0.05
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Table 11. Average λ from Simulations λ̄
selector model ρ s γ=0 γ=0.25 γ=0.5 γ=0.75 γ=1

PRESS CLMM Indep. 5 0.07 0.25 0.53 0.69 0.77
PRESS MLMM Indep. 5 0.18 0.55 0.91 0.97 0.99
PRESS CLMM Indep. 20 0.01 0.20 0.46 0.63 0.73
PRESS MLMM Indep. 20 0.11 0.84 0.98 0.98 0.99

PRESS** CLMM Indep. 5 0.07 0.27 0.61 0.78 0.84
PRESS** MLMM Indep. 5 0.15 0.49 0.95 1.00 1.00
PRESS** CLMM Indep. 20 0.01 0.20 0.50 0.66 0.73
PRESS** MLMM Indep. 20 0.09 0.88 1.00 1.00 1.00

PRESS CLMM 0.20 5 0.04 0.22 0.49 0.65 0.73
PRESS MLMM 0.20 5 0.14 0.52 0.90 0.97 0.98
PRESS CLMM 0.20 20 0.01 0.20 0.45 0.60 0.68
PRESS MLMM 0.20 20 0.12 0.85 0.97 0.98 0.99

PRESS** CLMM 0.20 5 0.05 0.23 0.56 0.73 0.79
PRESS** MLMM 0.20 5 0.12 0.46 0.94 1.00 1.00
PRESS** CLMM 0.20 20 0.01 0.20 0.48 0.61 0.68
PRESS** MLMM 0.20 20 0.09 0.88 1.00 1.00 1.00

PRESS CLMM 0.80 5 0.05 0.24 0.54 0.69 0.76
PRESS MLMM 0.80 5 0.14 0.58 0.88 0.95 0.97
PRESS CLMM 0.80 20 0.01 0.24 0.54 0.68 0.74
PRESS MLMM 0.80 20 0.16 0.87 0.97 0.99 1.00

PRESS** CLMM 0.80 5 0.06 0.21 0.58 0.76 0.81
PRESS** MLMM 0.80 5 0.20 0.44 0.95 1.00 1.00
PRESS** CLMM 0.80 20 0.01 0.24 0.56 0.68 0.74
PRESS** MLMM 0.80 20 0.09 0.92 1.00 1.00 1.00

The simulated optimal bandwidths can be compared to the average band-
widths from the simulations presented in Table 10. The results suggest that
the bandwidth selectors are performing adequately (for example, the av-
erage and optimal bandwidths for CLMM, PRESS**, s=5, and ρ are quite
close) and that PRESS is appropriate for MLMM and PRESS** for CLMM.
Additionally, notice that the simulated optimal bandwidths decrease as ρ in-
creases.

Comparing the results from Tables 9 and 11, it appears that the results
for λopt and λ̄ for MLMM agree in most cases, with a few exceptions at
γ=0. The opposite is true for CLMM. The estimate λopt performs well for
small amounts of misspecification. In fact, λ̄, on averge, is too small for large
misspecification. For misspecified models, CLMM model robust fits does not
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use enough of the nonparametric fit; it relies too heavily on the parametric
part. Alterations to the mixing parameter formula, such as incorporating
variance-covariance matrices into the formulas for λ̂ or changing the delete
cluster portion of the formula for CLMM, are possibilities left for further
study.

6 APPLICATION OF METHODS TO A REAL
DATA SET

The parametric, nonparametric, and model robust methods discussed above
can be applied to the wind speed data set from Haslett and Raftery (1989).
Twelve meteorological stations in Ireland were selected and the average wind
speed in knots were measured daily during the years 1961 through 1978.
This analysis looked at the average weekly wind speeds averaged over the
eighteen years. The stations, or clusters, were randomly selected from all
such stations in Ireland; consequently, the station is the random effect. Mea-
surements were taken at the same fifty three time points for each station,
making a total of 636 observations in the data set.

Because of the parabolic trend, a quadratic model was selected as the
parametric model. Two models were considered; a fixed effects model with
a quadratic trend in week and a mixed effects model with only a random
intercept term. The random intercept term was considered because each
cluster had a similar shape. This results in cluster specific fits that are
parallel shifts of the population average curve. The within-cluster variation
structure for the parametric model in the wind speed example is assumed to
be AR(1) and the between-cluster variation is assumed to be of independent
structure. Results in Waterman (2002) show that the model containing the
random intercept is an improvement over the fixed effects model. Thus, our
population average curve is estimated as

Ê(Y) = Xβ̂ = X




12.6576
−0.2520
0.004549



 ,

and the estimated variance-covariance matrix is R̂+(σ̂2
b0

)ZZ
′ = R̂+(7.2166)ZZ

′

where R̂i has the estimate of the variance (σ̂2 = 1.1325) down the diagonal
and the estimated covariances ĉjk = σ̂2ρ̂|j-k| = (1.1325)(0.5169)|j-k| in the
(j,k) and (k,j) off-diagonal cells.

The conditional distribution of Y|b is normal with mean Xβ + Zb and
variance-covariance matrix R. The cluster specific curves can be estimated
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as

Ê(Y) = Xβ̂ + Zb̂ = X




12.6576
−0.2520
0.004549



 + Z





2.8481
−3.1644
−1.7556
−1.5244
−0.3572
−3.9325
5.4406
−1.7344
1.4900
2.1325
0.1602
0.3972





and the estimated variance-covariance matrix is given by R̂ as above.
A trellis plot of the population average curve and cluster specific curves

by cluster (station) appears in Figure 2. The observations in the cluster are
represented by the scatterplot. The dotted curve is the population average
curve, and the solid curves are the cluster specific curves. The population
average curve is the same for every cluster in this example. As shown in the
equations and in plots, the intercepts for the cluster specific curves differ.
Thus, the cluster specific fit at each station is a parabola shifted up or down
for a particular cluster. Notice that the population average curve fits poorly
to some of the clusters, in particular to clusters MAL, KIL, BIR, and MUL.
The cluster specific curves are an improvement over the population average
curve, as to be expected.

At virtually every station, the wind speeds remain relatively constant
through January and February, and then diminish during the spring months.
This is followed by a drop in wind speed during the middle of the year. This
drop remains during the summer months (with a slight increase in wind
speed for some stations during July). For some clusters, such as station
BIR, the drop in wind speeds during the summer months is minimal. Other
clusters, like station MAL, exhibit a steep drop in wind speed. During the
fall and winter months, the wind speeds then increase and then level off.
The proposed parametric model is unable to model this type of trend – the
level speeds in the winter months, combined with the decreased speeds in
the summer months. The parametric model has been misspecified. The bias
of the parametric linear model can be rectified through the use of nonpara-
metric, or local, mixed models.
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Figure 2: Parametric Linear Mixed Model (Plot of Population Average and
Cluster Specific Curves by Station)

20 50 20 50

20 50 20 50

week

10

20

10

20

10

20

w
in

d 
sp

ee
d 

in
 k

no
ts

BEL BIR CLA CLO

DUB KIL MAL MUL

ROS RPT SHA VAL

The local mixed model used for this data set was the local linear mixed
model with a random intercept. Population average and cluster specific
curves were found for the conditional local mixed model and the popula-
tion average curve was found for the marginal local mixed model. The
between-cluster and within-cluster variation (B̃ and R̃) are assumed to be
of independent structure. This differs from the within-cluster structure used
in the parametric model. Research by Lin and Carroll (2001) give asymp-
totic results that suggest the use of the independence structure for local
GEE estimation. Both variance-covariance structures were studied for this
example and the conclusion was to use independence for the local model due
to fewer difficulties with variance component estimation. The independence
structure allowed a wider range of bandwidths to be used.

For both the conditional and marginal local mixed models, PRESS and
PRESS** both chose a bandwidth of 0.05. It was expected that the band-
width chosen would be small. The dataset is quite large, so a small band-
width gives weight to many observations. A small bandwidth is also needed
in the conditional local cluster specific analysis to be flexible enough to catch
the sudden drop at station MAL.
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As in the parametric linear mixed model, a population average curve
and cluster specific curves can be found for the conditional local mixed
model. The marginal local mixed model will yield a population average
curve. Recall that local linear mixed models were calculated at each value
of the regressor x̃. Thus, for each x̃0 in the conditional local mixed model,
there is an estimate of parameter vector β̂0 and a predictor of random effects
vector b̂0. For example, the CLMM population average fit at x̃=1 using a
bandwidth of 0.05 can be expressed, for each of the 12 stations, as

ŶPA,0 = x̃
′
0β̂

C

0

=
[
1 1

] [
10.7398
0.3793

]

and the cluster specific fits at x̃=1 are

ŶCS,0 = x̃
′
0β̂

C

0 + b̂0

=
[
1 1

] [
10.7398
0.3793

]
+





2.7599
−3.7212
−2.3118
−1.7334
0.1229
−4.5850
6.2676
−2.2272
1.5486
3.0417
−0.1867
1.0247





.

For each x̃0 in the marginal local mixed model, there is an estimate of the
parameter vector β̂0. For a bandwidth of 0.05, the marginal local population
average fit at x̃=1 is

ŶPA,0 = x̃
′
0β̂

M

0

=
[
1 1

] [
10.7408
0.3860

]
.
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Figure 3: Conditional Local Mixed Model with h=0.05 (Plot of Population
Average and Cluster Specific Curves by Station
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Figure 4: Marginal Local Mixed Model with h=0.05 (Plot of Population
Average Curve by Station
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Figure 5: Plot of CLMM and Parametric Cluster Specific Fits (h=0.05)
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Notice that the vector β̂0 for the two local models are close, indicating
that the population average fits at x̃=1 for the two local models are almost
identical.

Trellis plots by cluster appear in Figures 3 and 4. Figure 3 contains the
population average and cluster specific curves for the conditional local mixed
model using a bandwidth of 0.05. The population average is the dotted line
and the cluster specific fit is the solid line. Figure 4 plots the population
average curve by station for the marginal local mixed model.

The population average fits are again the same for every cluster. For
some of the clusters, the population average is a poor fit. The cluster specific
fits are impressive, however. Figure 5 is a comparison of the CLMM cluster
specific fits with a bandwidth of 0.05 and the parametric cluster specific fits.
The local cluster specific fits are tremendously flexible. Because they are fit
pointwise, they no longer follow a particular form. In the parametric model,
a random intercept term meant that the cluster specific fits were shifted
parabolas; they could never cross. This is not true with the local models. A
random intercept term in the local model is also a shift, but it is a shift at
a particular point. That shift differs as one moves across the values of the
regressor. This allows local fits that potentially could cross.
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The local fits are an improvement over the parametric fit. Notice that
the drop in wind speed in midyear is captured in both the population average
and cluster specific fits, while capturing the level wind speeds in the winter
months. The nonparametric mixed model can capture this trend, whereas
the specified parametric model was unable to model these trends.

Our mixed model robust regression estimate is

ŶMMRR = (1 − λ)ŶP + λŶNP

where ŶP is the parametric linear mixed model fit and ŶNP is the nonpara-
metric fit. For population average mixed model robust regression using the
conditional local mixed model, the parametric and CLMM population aver-
age fits are used to find the MMRR population average fits. Mixed model
robust regression using the marginal local mixed model uses the parametric
and MLMM population average fits. Cluster specific mixed model robust
regression uses the parametric and CLMM cluster specific fits in the calcu-
lation of the MMRR cluster specific fits.

For mixed model robust regression using CLMM, the estimate of λ was
0.86, and the estimate for MMRR involving MLMM was 1. A λ of 1 cor-
responds to a mixed model robust regression fit equal to the local fit, so
MMRR using the marginal local mixed model is just the marginal local
mixed model fit. The MMRR fit using the conditional local mixed model
does not strictly use the conditional local fit, as λ does not equal 1. The
estimation of λ for MMRR using CLMM involves the cluster specific fits,
and the estimate of λ less than 1 suggests that the cluster specific fits may
benefit from the smoothness of the parametric regression curve. Because
the estimate of λ is so close to one, it would be hard to distinguish the local
and mixed model robust fits in a trellis plot like those given above.

Notice that both estimates of lambda are fairly large. This is consistent
with our findings given above; the parametric fit can be poor for some
clusters, and there is a considerable difference between the parametric and
nonparametric fits for some clusters. The nonparametric methods were an
improvement over the parametric fits, and the estimates of λ should be close
to 1.

7 DISCUSSION

The local mixed model methods offer population average and cluster specific
fits with tremendous flexibility. This flexibility is due in part to the fact that
they are fit pointwise and therefore able to model trends that the specified
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parametric model may be incapable of modeling. The local models are
typically simple; fitting a local linear, as done in this paper, or a local cubic
mixed model with a random intercept at each x̃0 value will suffice.

PRESS should be used as the bandwidth selector for population aver-
age estimation. Conversely, PRESS** is the bandwidth selector of choice for
cluster specific prediction. These conclusions are consistent with the work of
Clark (2002) and Mays, Birch, and Starnes (2001). The bandwidth selectors
are also performing as expected; evidence of this fact is found by comparing
the bandwidths selected from PRESS and PRESS** with the optimal band-
widths from the simulation (results not presented here, but are presented in
Waterman (2002)).

The simulation studies indicate that the marginal local mixed model
should be used for population average estimation. When using PRESS as
the bandwidth selector, the marginal model outperformed the conditional
local mixed model in terms of minimizing the integrated mean square er-
ror. In addition, the population average model robust mixed model using
CLMM has large INTMSE values in comparison to the population aver-
age mixed model robust values using MLMM for moderate to large model
misspecification. For cluster specific prediction, the conditional local mixed
model should be used, as the marginal local mixed model is inappropriate
for cluster specific inference.

The mixed model robust methods (using the marginal local mixed model
for the population average and the conditional local mixed model for cluster
specific inference) are extremely competitive in terms of minimizing the
mean square error. With no misspecification, the parametric model should
have the smallest INTMSE; the model robust methods are very close to the
parametric values for the correctly specified model. For low to moderate
misspecification (0 ≤ γ ≤ 1) in the simulation study, for example) the
mixed model robust methods often have the smallest mean square error
when compared to the parametric and local methods. When the model is
grossly misspecified (for example, when γ=1 in the simulation study), the
local methods have the minimum mean square errors, with the mixed model
robust mean squares comparable to the local values.

The mixing parameter estimates for mixed model robust regression are
found using the formula from Mays, Birch, and Starnes (2001), but adapted
for the cluster correlated random coefficient model. When comparing the
average mixing parameter to the simulated optimal mixing parameter for a
given combination, λ̄ for MLMM was close to the optimal value for low to
high misspecification.

For the conditional local mixed model, λ̄ was comparable to the optimal
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value for little to no model misspecification. However, λopt and λ̄ differed
for moderate to large misspecification, indicating that when the model has
been misspecified, the cluster specific mixed model robust fit favors the
parametric fit; it does not use as much of the local fit as it should.

Finally, we can conclude that working with correlated data creates re-
sults that may be counterintuitive. Our intuition, often based upon prior
work with independent data, was often off the mark due to the lack of con-
sideration of the correlated nature of our data. For example, at first it was
counterintutive that the bandwidth in our local models would decrease as the
amount of correlation increased. Upon further inspection, we realized that
this finding was due to the marginal correlation inherent in the local mixed
model. And although we felt that the misspecification term in our simu-
lations would influence the estimate of the correlation, it was unexpected
that as γ increased the estimates of ρ in the AR(1) cases either increased or
decreased depending upon the magnitude of the correlation; further work in-
dicated that the sinusoidal nature of the misspecifiation term was the reason
for this result.

APPENDIX: Aymptotic Theory for the Mixing Pa-
rameter

We can write our population average model as

yij = θ(xij) + εij (49)

and the cluster specific model for the ith cluster as

yij = θi(xij) + εij (50)

for i=1,...,s and j=1,...,ni. The functions θ(xij) and θi(xij) are the true pop-
ulation average and cluster specific mean functions. The asymptotic theory
presented here will be for the population average only; we will then assume
that “asymptotic”means that the number of observations increases without
bound through the number of clusters, as the cluster is the independent
unit. In other words, the number of clusters s → ∞ for fixed values of
the regressor. As the data are correlated, asymptotic theory for the cluster
specific model is complicated, and has yet to be solved.

We will assume that E(εi) = 0, V ar(εi) = Ri, and V ar(Yi) = Vi. It
is assumed that the values of the regressors x are fixed uniformly on the
compact set C in ℵ and that θ =

[
θ(x11), ..., θ(xsns)

]′
is continuous.
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The two estimates used in the MMRR formulation can generically be
written as the parametric estimate (f̂) and the nonparametric estimate (ĝ),
so that

θ̂(xij) = (1 − λ)f̂(xij , β̂) + λĝ(xij) = (1 − λ)f̂ + λĝ. (51)

In this work, the fits f̂ and ĝ are the population average fits.
We will define the inner product similar to Mays, Birch, and Starnes

(2001) and Burman and Chaudhuri (1992), as

〈h1,h2〉 = n−1

n∑

i=1

h1(xi)h2(zi), (52)

where h1 and h2 are two functions of xi and zi. The norm is similarly defined
as

‖ h1 ‖2= 〈h1,h2〉. (53)

Define distances δs and γs as

δs = {inf ‖ θ − f(β̂) ‖: β̂ ∈ <2} (54)

and
γ2

s = E(‖ ĝ(xij) − θ ‖2). (55)

The first measure is the smallest distance between the parametric fit and the
true model. If the infimum is unique, the location of this infimum will be
denoted as β∗. The subscript s denotes the fact that this distance measure is
dependent upon the number of clusters; note, however, that s→ ∞, so this
distance measure approaches an integral. The lims→∞δs is equal to zero
if the true model θ is contained in the class of parametric functions under
consideration by the user. Otherwise, if the limit of this distance is not zero,
the parametric model has been misspecified.

The second measure γs is the average squared distance between the non-
parametric estimate and the true regression function, with the subscript s
indicating the measure’s dependency on cluster size. The measure γs is the
average mean square error (AVEMSE) of Mays (1995).

Now, consider the distance between the model robust estimate and the
true regression function

‖ (1 − λ)f̂ + λĝ − θ ‖ . (56)

The value of λ that minimizes this distance is the theoretically optimal mix-
ing parameter. Because this distance is the square root of a sum of squares,
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the norm is a monotonically increasing function. Thus, the minimum dis-
tance is the minimum of the sum of squares. It is easy to show that the
minimum is attained at

λ∗ =
〈f̂ − ĝ, θ − f̂〉

‖ f̂ − ĝ ‖2
. (57)

The theoretically optimal mixing parameter of course depends on the un-
known quantity θ. The estimate of λ∗ is the data driven mixing parameter
given by

λ̂∗ =
〈f̂−i − ĝ−i, Y − f̂〉

‖ f̂ − ĝ ‖2
(58)

where f̂−i and ĝ−i are the parametric and nonparametric estimated by delet-
ing the ith cluster. This estimate is an extension of the work by Mays, Birch,
and Starnes (2001) and Burman and Chaudhuri (1992) for the fixed effects
case, where the data are not clustered and f̂−i and ĝ−i refer to the paramet-
ric and nonparametric fits with the ith point deleted.

The following three assumptions will be needed for the results that follow:

A1. ‖f(β̂, .) − f(β∗, .)‖ = Op(π)

A2.
‖ĝ − θ‖2 − E(‖ĝ − θ‖2)

E(‖ĝ − θ‖2)

P
⇒ 0, as s → ∞

A3. lim
s→∞

γ−1
s π = 0.

The first assumption provides the parametric convergence rate between the
optimal parametric estimate (denoted by f(β∗, .)) and the user’s parametric
estimate (given as f(β̂, .)). The second assumption indicates that the dis-
tance ‖ĝ − θ‖ = Op(γs). The third assumption says that the nonparametric
estimate has a slower convergence rate than the parametric estimate. (The
nonparametric convergence rate is γs, while the faster parametric rate is π).
With these assumptions, we can state the following two lemmas and theo-
rem:

Lemma 1 : Assuming that the assumptions A1- A3 hold,

‖f̂ − ĝ‖ =

{
Op(1), if lims→∞ δs 6=0
Op(γs), if δs= 0.
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Lemma 2 : Assuming that the assumptions A1- A3 hold,

λ∗ =

{
Op(γs), if lims→∞ δs 6= 0
Op(πγ−1

s ), if δs= 0

Theorem 1 : Assuming that the assumptions A1- A3 hold,

‖(1 − λ∗)f̂ + λ∗ĝ − θ‖ =

{
Op(γs), if lims→∞ δs 6= 0
Op(π), if δs= 0.

Lemma 1 gives the convergence rates of the distance between the parametric
and nonparametric estimate. Recall that δs is zero if the parametric estimate
is correct, and lims→∞δs does not equal zero if the parametric estimate is
incorrect. Thus, the distance between f̂ and ĝ is dependent upon the user’s
parametric model. Lemma 2 gives the convergence rate of the asymptotically
optimal mixing parameter. Notice again the dichotomy - the case where the
parametric model is correct, and the case where the parametric model has
been misspecified. Theorem 1 states that the distance between the mixed
model robust estimate using the asymptotically optimal mixing parameter
and the true regression function converges at the faster parametric rate if
the parametric model has been correctly specified. Otherwise, the distance
between the mixed model robust estimate using λ∗ and θ converges at the
nonparametric rate.

Asymptotic results are needed for the asymptotically optimal data driven
mixing paramter. This is not a straightforward extension of previous work,
however. Past asymptotic results for the data driven estimate of the mixing
parameter have utilized Whittle’s inequality (1960), which assumes inde-
pendence of the data. This is not the case in our work because the data are
marginally correlated. Thus, asymptotic results for the data driven mixing
parameter is considered future work.

REFERENCES

Allen, D. (1974), “The relationship between variable selection and data aug-
mentation and a method for prediction”, Technometrics, 16, 125-127.

36



Assaid, C. and Birch, J.B. (2000), “Automatic Bandwidth Selection in Ro-
bust Nonparametric Regression”, Journal of Statistical Computation and

Simulation, 66, 259-272.

Burman, P., and Chaudhuri, P. (1992), “A hybrid approach to paramet-
ric and nonparametric regression”, Technical Report No. 243, Division of
Statistics, University of California at Davis, Davis, CA.

Clark, S.K. (2002), “Model robust regression based on generalized esti-
mating equations”, Ph.D. dissertation, Department of Statistics, Virginia
Polytechnic Institute and State University, Blacksburg, VA.

Craven, P., and Wahba, G. (1979), “Smoothing noisy data with spline func-
tions”, Numerical Mathematics, 31, 377-403.

Einsporn, R.L., and Birch, J.B. (1993), “Model robust regression: using
nonparametric regression to improve parametric regression analyses”, Tech-

nical Report 93-5, Department of Statistics, Virginia Polytechnic Institute
and State University, Blacksburg, VA.

Fan, J. and Gijbels, I. (1995), “Adpative oder polynomial fitting: band-
width robustification and bias reduction”, Journal of Computational and

Graphical Statistics, 4, 213-227.
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