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Abstract.  To support evaluation of water quality trends, a water quality variable may be 

measured at a series of points in time, at multiple stations. Summarization of such data 

and detection of spatiotemporal patterns may benefit from the application of multivariate 

methods.  We propose hierarchical cluster analysis methods that group stations according 

to similarities among temporal profiles, relying on standard clustering algorithms 

combined with two proposed, rank-based criteria of similarity. An approach 

complementary to standard environmental trend evaluation relies on the incremental sum 

of squares clustering algorithm and a criterion of similarity related to a standard test for 

trend heterogeneity.  Relevance to the context of trend evaluation is enhanced by 

transforming dendrogram edge lengths to reflect cluster homogeneity according to a 

standard test. However, the standard homogeneity criterion may not be sensitive to 

patterns with possible practical significance, such as region-specific reversal in the sign 

of a trend.  We introduce a second criterion, which is based on concordance of changes in 

the water quality variable between pairs of stations from one measurement time to the 

next, that may be sensitive to a wider range of patterns.  Our suggested criteria are 

illustrated and compared based on application to measurements of dissolved oxygen in 

the James River of Virginia, USA.  Results have limited similarity between the two 

methods, but agree in identifying a cluster associated with a locality that is characterized 

by pronounced negative trends at multiple stations. 

 



 ii

Keywords.  Cluster analysis, environmental monitoring, environmental trends, James 

River, nonparametric procedure, Ward’s method.   

 

Acknowledgements. Funding for this research was received from the U.S. EPA via a 

Science to Achieve Results (STAR) Grant RD 83136801-0.  The research has not been 

subjected to any USEPA review and so no USEPA endorsement should be inferred. 

We gratefully acknowledge Carl Zipper and Jason Hill for assistance in accessing and 

interpreting water quality data.  



 iii

CONTENTS 
 

Introduction ................................................................................................................................................ 4 
1. Cluster Analysis Methodology ........................................................................................................... 5 

1.1 Hierarchical Clustering of Monitoring Stations Based on Similarities in Temporal Profiles ..... 5 
1.2 A Criterion of Trend Similarity Related to a Standard Trend Homogeneity Test ...................... 7 
1.3 Clustering by Incremental Sum of Squares with Transformed Plotting Heights ........................ 9 
1.4 An Approach Based on Concordant and Discordant Changes over Time ................................ 10 

2. An Empirical Comparison of the Two Criteria................................................................................. 12 
2.1 Measurements of Dissolved Oxygen in the James River of Virginia ....................................... 12 
2.2 Results ...................................................................................................................................... 13 

3. Discussion ........................................................................................................................................ 16 
References ................................................................................................................................................ 19 
FIGURES ................................................................................................................................................. 20 
Appendix 1.  Station codes and geographic coordinates for 71 stations used in the analysis................... 34 
Appendix 2.  Updated R function library ................................................................................................. 36 



 4

INTRODUCTION 
 

An important use of water quality data is to evaluate trends over time (Gilbert, 1987; 

Helsel and Hirsch, 1992; Millard and Neerchal, 2000).  Information on temporal trends 

may be useful in formulating management strategies to maintain and improve water 

quality.  In practice, statistical trend evaluation may involve separate analyses for 

individual monitoring stations.  However, interpreting the volume of statistical results 

from a station-by-station analysis with multiple water quality endpoints may be 

challenging.  Multivariate and graphical techniques may help us to recognize patterns in 

data representing multiple stations. Regional patterns in particular may be useful in 

formulation of region-specific water quality management strategies.  

 

Here, we will explore use of hierarchical cluster analysis (HCA), briefly reviewed in 

Section 1.1, to identify groups of stations with similar temporal profiles, for a water 

quality endpoint measured at repeated points over time.  In choosing a specific HCA 

procedure, important decisions include the criterion of similarity among the temporal 

profiles, and an algorithm that can use the chosen criterion to identify groups of stations. 

(We will sometimes use the term similarity for brevity, while recognizing that some 

calculations actually require a measure of dissimilarity.)  We focus primarily on the 

problem of quantifying similarity among temporal profiles, relying on standard 

hierarchical cluster analysis software to perform clustering. Different clustering 

algorithms have been used, depending on the criterion of similarity among temporal 

profiles.  

 

We compare two rank-based criteria of similarity.  The first, described in Section 1.2, is 

related to a standard test for trend homogeneity (van Belle and Hughes, 1984). Data for a 

station are reduced to a scalar summary statistic, and clustering may be based on 

differences in values of the statistic between pairs of stations.  The effect is that stations 

are grouped according to the strength and sign of trend.  HCA based on this criterion may 

complement standard trend evaluations. 
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However, reduction of the data for a station to a scalar summary may result in lower 

sensitivity to patterns with some practical importance, such as a reversal in trend in a 

particular a region. Therefore in Section 1.3 we propose an alternative criterion based on 

concordance of changes in the water quality endpoint between pairs of stations, from one 

measurement time to the next.   

 

The volume of cluster analysis literature is large and reflects applications in diverse 

disciplines.  Summaries are provided by general texts such as Gordon (1999), Romesburg 

(1984), Seber (1984), and Venables and Ripley (1994).  To avoid repetitious citation, we 

will simply note that where we do not give a specific reference for some aspect of cluster 

analysis, more extensive exposition is provided by Seber (1984) and other general 

treatments.  

1. METHODS 
 
1.1 Hierarchical Clustering of Monitoring Stations Based on 

Similarities in Temporal Profiles 

 
Our objective will be to group monitoring stations based on similarities in temporal 

profiles, when a water quality endpoint has been measured at a series of points in time at 

each station. Based on data comprising n measurement stations, each measured at T 

times, we may let itx  denote the tth measurement for the ith station.  In practice -- as in 

applications presented here -- measurements may be missing for some measurement 

times, for some stations.  

 

Several multivariate techniques are available for evaluation of information in the form of 

an index of pairwise similarity or dissimilarity among objects (Seber, 1984). Similarity or 

dissimilarity values comparing n objects are conveniently arrayed in an n n×  matrix 

with ijd  in the ith row and jth column.  Reasonable requirements for dissimilarity criteria 

are 0ijd ≥ , 0iid = , and ij jid d= (Seber, 1984; Venables and Ripley, 1998).  
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For our purposes it is useful to evaluate dissimilarity information using what may be the 

most transparent approach, namely agglomerative HCA.  The results from such a 

procedure are displayed graphically as a dendrogram, such as those displayed in many of 

our figures.  The agglomerative approach is iterative, starting with each object viewed as 

a separate cluster, and at each iteration joining two clusters, carried forward from 

previous iterations, until objects are joined in a single cluster.  In the first iteration a 

cluster is formed by joining two objects that are most similar according to the chosen 

criterion.  Some subsequent iterations require choice of a linkage criterion, which can be 

used to quantify the similarity of clusters that may contain multiple objects. A typical 

hierarchical cluster analysis program will provide multiple options. For example, the R 

library function hclust Version 2.3, used for our examples, provides seven linkage 

criteria.  For our examples we have relied on the average linkage approach and Wards 

method, with the choice depending on the criterion of temporal profile similarity.   

 

Once a dendrogram has been created using an HCA procedure, clusters can be identified 

based on a desired number of clusters, or based on a specified dissimilarity. An important 

issue is specification of the number of clusters supported by the data. Clusters will tend to 

be more homogeneous internally if more are extracted, but extracting more clusters will 

not necessarily result in a more useful classification. As an alternative to specifying the 

number of clusters one may seek to identify individual clusters that are in some sense 

well supported, without necessarily committing to an exhaustive classification.  

 

The procedures that we discuss have been programmed in R (R Core Development Team, 

2005).  In addition to using hclust to generate dendrograms, we use cutree to extract 

clusters from a dendrogram object.  A library of R functions is included as an appendix.   
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1.2 A Criterion of Trend Similarity Related to a Standard Trend 

Homogeneity Test  
 
Van Belle and Hughes (1984) introduced a chi-square statistic for testing homogeneity of 

environmental trends.  Their objective of trend homogeneity testing is evidently closely 

related to our objective of using cluster analysis to find homogeneous groups of stations.  

A rank-based statistic Z is computed for each station. When the objective is to test the 

trend for one station, a p-value is computed by referring Z to a standard normal 

distribution.  The homogeneity of trend test combines the Z statistics representing n 

stations, 1, ... , nZ Z say. 

 

It is useful to summarize computation of the Z statistic for a single station. The statistic is 

related to Kendall’s τ  (Kendall, 1962) as used for relating water quality endpoint to time, 

involving consideration of each pair of measurement times.   We suppose that the water 

quality endpoint is measured at each of T times for a particular station. From the T 

measurements we compute Z = ( )S δ+ ( )/ Var S .  Here S is computed by 

considering each of ( )1 2/T T −  distinct pairs of measurement times.   Each of these 

pairs is scored as “tied,” “concordant,” or “discordant,” according as the water quality 

endpoint is equal in value for both measurement times, increases in value from the first to 

the second for both, or decreases from the first to the second for both. (The terminology 

reflects whether or not the sign of change for the water quality endpoint agrees with the 

sign of change of the time variable.)  Ties are possible because of limited measurement 

precision, or because non-detects are present in the data and counted as ties.  S is 

computed by subtracting the number of discordant pairs from the number of concordant 

pairs. The value ofδ  is –1, 0, or 1 according as S is positive, equal to 0, or negative. 

( )Var S  is an estimate of sampling variance under an assumption of no trend, in our 

applications incorporating a standard adjustment for tied measurements (Gilbert, 1987, 

Expression 17.2).  
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The statistics for n stations, 1, ... , nZ Z say, may be used in a test of homogeneity of trend.  

We compute test statistic 2
Hχ  = ( )2

1

n
ii

Z Z
=

−∑  where Z  is the average of 1, ..., nZ Z .  

To compute a p-value, for testing a null hypothesis of no trend heterogeneity, 2
Hχ   is 

referred to a chi-square distribution with n – 1 degrees of freedom. A statistically 

significant result is taken as evidence for trends differing in sign or magnitude among 

stations. For our purposes, it is good to observe that 2
Hχ  is a sum of squared deviations 

from a mean -- a corrected sum of squares or SSc -- considering that some cluster analysis 

procedures are designed to minimize SSc. 

 

Evidently, the approach may be extended to test homogeneity of groups of stations, 

allowing heterogeneity among groups (e.g., Table 1).  A chi-square value is obtained by 

computing 2
Hχ  for each group, as for testing homogeneity of the group, and summing 

across groups.  The p-value is computed by referring the statistic to a chi-square 

distribution with n k−  degrees of freedom, the sum of degrees of freedom over groups. 

 

Here our objective is to use Z statistics to group monitoring stations. 2
Hχ  provides a 

criterion that can be used to identify homogeneous groups. The dissimilarity of the ith 

and jth stations can be taken to be the squared difference of Z scores ( )2

i jZ Z− . We 

will denote this dissimilarity criterion 2ZDiffs (for Z differences squared). Some 

justification is provided in the next section.  A familiar statistical manipulation relates the 

sum of 2ZDiffs , over pairs of stations, to the test statistic 2
Hχ :  

( ) ( )
1 12 2 2

1 1 1 1

n n n n

i j i j H
i j i i j i

Z Z Z Z Z Z n χ
− −

= = + = = +

− = − + − = ×∑ ∑ ∑ ∑ . 

2ZDiffs  can be computed for a pair of stations with no measurement times in common.  

In case of missing measurements, it can happen that there are few measurement times in 

common for some stations.  It seems sensible to incorporate, among criteria for selection 

of stations, some criterion based on a minimum number of common measurement times.    
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1.3 Clustering by Incremental Sum of Squares with Transformed 

Plotting Heights  

 

To perform clustering based on the 2ZDiffs criterion, we use the incremental sum of 

squares method (also known as Ward’s method) because of a straightforward relationship 

to our objective of finding groups of stations homogeneous according to 2
Hχ . Let ( )2

H Cχ  

denote the test statistic for trend homogeneity, computed using stations in a setC , but 

with a value of zero if C contains only one station. The increment from merging two 

clusters iC  and jC  is  

( ) ( ) ( ) ( )2 2 2 2
H H H H, i j i j i jC C C C C Cχ χ χ χΔ = ∪ − − . 

According to Ward’s method, as expressed for our context, the pair of clusters merged at 

a given step is such as to minimize such an increment.  It is clear that the effect at a given 

iteration is also to minimize the chi-square statistic, described in the previous section, for 

a test of simultaneous trend homogeneity.   

 

In a default dendrogram based on Ward’s method (e.g., Figure 3), dendrogram branch-

points are plotted at twice the 2
Hχ  increment (Seber, 1984).  In the present context the 

effect of the factor of 2 is that when a cluster includes only two stations, the height 

plotted equals 2ZDiffs .  We find it useful to modify the dendrogram by substituting 

plotting heights more closely related to standard trend homogeneity computations (e.g., 

Figure 4). We plot Cluster C at height ( ) ( )2
H 1/ CC nχ −  where ( )2

H Cχ  is the chi-

square statistic and Cn the number of stations for C.  We observe that for the test of 

homogeneity of C , the expected value of the chi-square distribution equals its degree of 

freedom 1Cn − .  Therefore values of our modified plotting height greater than 1 are 

larger than expected under an assumption of homogeneity.  (Of course, such a 

distributional assumption does not take into account that our groups are defined so as to 

minimize chi-square increments.)  We apply the square-root transformation in view of the 

skewness of the 2ZDiffs distribution over pairs of stations, which without our 

transformation results in very short relative heights for the first clusters joined.   



 10

 

In programming such a modification of a dendrogram, it is convenient to work in a 

programming environment where a dendrogram object can be generated using a library 

function and then modified, and the modified dendrogram plotted or otherwise evaluated. 

This allows modification of selected components of the dendrogram specification,  such 

as plotting heights in our approach, while other components are handled by library 

routines.  For some manipulations of dendrograms, it is convenient to rely on recursive 

functions. For example, the count of stations for a cluster is the sum of counts for 

member clusters.  Similarly, cluster 2
Hχ  values are amenable to recursive computation.   

 

1.4 An Approach Based on Concordant and Discordant Changes over 

Time  
 
For a second criterion of similarity among temporal trends, which we think may be 

sensitive to a wider array of temporal profile similarities, we propose the Rank Temporal 

Profile Similarity Index (RTepsi).  For a given pair of stations, the value of the index is 

based on concordance between stations, in temporal changes in the water quality 

endpoint.  

 

It is helpful in this context to adopt a modified notation.  Suppose that the comparison of 

stations i and j is based on ijT measurement times with values for both stations, 1ix , ... , 

ijiTx for station i, and 1jx , ... , 
ijjTx for station j.  In the sequel, for brevity, we will let 

T denote the number of time-points, with the understanding that in case of missing 

measurements at some times, this may actually depend on the stations compared.   

 

We will say that water quality endpoint changes for the two stations are “concordant” for 

a pair of measurement times when the measured value increases from the first time to the 

second for both stations, decreases for both, or is unchanged for both.  A pair of 

measurement times will be called “discordant” for two stations if not concordant.  Ties in 

particular are counted as concordances.  Then our measure of similarity for a pair of 
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stations is the fraction of pairs concordant, out of the ( )1 2/T T −  pairs with 

measurements for the two stations.  Our index can be expressed formally as 

 

( )
( ) ( )( )

( ) ( )

1

1 1

1RTepsi 0
1 2/

T T

ij il ik jl jk
k l k

il ik jl jk

I x x x x
T T

I x x I x x

−

= = +

⎡= − − >⎣−

⎤+ = = ⎦

∑ ∑
 

where the indicator function ( )I c  equals 1 or 0 according as condition c does or does 

not hold.  

 

Where a criterion of dissimilarity is required -- rather than a criterion of similarity -- we 

subtract RTepsi values from one.  The result can be described as the fraction of pairs of 

measurement times that are discordant, relative to the number of pairs with data 

available.   

 

In our implementation, computation of RTepsi for a pair of stations is subject to a 

minimum count of years with measurements for both stations. To impose this minimum 

count we first form a matrix with RTepsi values, including all stations with some 

measurements available.  For any pair of stations with too few times measured for both, 

the missing value code is entered in the appropriate cell of the matrix. Stations are then 

deleted one at a time until the matrix contains no missing values, at each step deleting the 

station associated with the largest number of values missing.  

 

To perform hierarchical cluster analysis, we use the average linkage criterion, which is 

relatively conventional and easily explained.  According to that approach, the 

dissimilarity for a pair of clusters is the average of dissimilarities, over pairs of objects 

with one member of the pair belonging to each of the clusters compared.   
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2. AN EMPIRICAL COMPARISON OF THE TWO CRITERIA 
 
2.1 Measurements of Dissolved Oxygen in the James River of Virginia 

 

The Virginia Department of Environmental Quality (VADEQ) samples water quality 

from streams and rivers in Virginia (USA), for evaluation of water quality status and 

trends.  We report comparisons of the two criteria based on measurements of dissolved 

oxygen (DO, mg•L-1) from 71 stations on the James River and its tributaries, that met 

criteria for computation of both measures of similarity.  The locations of the 71 stations 

are displayed in Figure 1.   

 

Most stations had multiple measurements in some years.  Before computing similarity 

criteria, the data were reduced to annual median values, so that each combination of 

station year is represented by a single value at most.  The data used are limited to the 15-

year series ending in 2004.  Stations were included such that there were 5 or more years 

with measurements for both stations in any pair included, within the 15-year series.  

 

Station labels used in our graphical displays (e.g., Figure 1) incorporate a 3-letter stream 

code from the VADEQ data, and a numeric index representing order of distance from the 

stream mouth.  One stream (JMS) represents stations actually located on the James River, 

accounting for 20 stations.  Other streams correspond to tributaries, which are represented 

very unequally.  There are 11 stations for the Pagan River (PGN), 2-6 for 5 other 

tributaries, and a single station each for 22 tributaries.  

 

Appendix 1 lists the 71 stations contributing data to our analysis, according to station 

codes used by VADEQ.  The appendix shows the correspondence between our station 

codes and the longer codes used by VADEQ, which incorporate distance in miles from 

stream mouth.  The appendix allows retrieval of detailed information for any station of 

interest from the VADEQ (2006) web site.   
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2.2 Results 
 
An exploration of regional patterns in temporal profile information may naturally include 

separate graphical analyses for pre-defined subsets of the data, such as river basins or 

physiographic provinces. Figure 2 displays temporal profiles for annual medians for the 

Pagan River and James River, which together account for almost half of the stations used 

in our analyses. These results may be compared to subsequent graphs for clusters based 

on our procedures.  A feature that is important in subsequent analyses is an apparent 

negative trend for stations associated with the Pagan River. 

 

Our initial analysis involved clustering the set of 71 stations.  As a result of observing 

interesting patterns involving the Pagan River and Jones Creek stations, additional 

analyses focused on stations for those streams.   

 

Dendrograms based on our two criteria are displayed in Figures 3 and 4. In Figure 4 

cluster indices have been added to station labels, for 4 clusters identified from the 

dendrograms, using the cutree function.  Cluster indices appearing on the ZDiff2 

dendrogram are default indices generated by cutree.  Cluster indices appearing on the 

RTepsi dendrogram were chosen so as to maximize the number of stations with the same 

cluster index in both dendrograms, so that where possible similar clusters receive the 

same index in both dendrograms.   

 

A feature in common for the two dendrograms is a cluster with a relatively large number 

of stations from the Pagan River.  Apart from such a cluster the dendrograms do not 

display conspicuous similarities.  The two criteria are not strongly correlated across pairs 

of stations (Figure 5).  Table 1 displays a cross-classification of stations according to the 

two criteria, after extracting 4 clusters.   

 

Figure 6 displays hierarchical cluster analysis results obtained using only the Pagan River 

and Jones Creek stations. Special mention seems appropriate for results for two particular 

stations.  The single station for James Creek (JOG-1 or 2-JOG000.62), located at the 
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confluence with the Pagan River, clusters relatively closely with Pagan River stations.  

Among Pagan River stations, the most distinctive profile is apparently associated with the 

station furthest upstream (PGN-11 or 2-PGN010.07).  Some subsequent figures focus on 

these particular stations.   

 

Figure 7 compares the profiles for two stations of particular interest (JOG-1, PGN-11) to 

the combined set of Pagan River and Jones Creek profiles.  The profile for PGN-11 is 

seen to be relatively flat, compared to other Pagan River profiles.  An apparent difference 

between dendrograms generated according to the two criteria is that using the RTepsi 

criterion there is a greater tendency for adjacent stations to cluster together.   (Again, note 

that stations are numbered from the mouth towards headwaters.) 

 

In selecting the number of clusters supported by the data, one may consider the results 

from the pooled homogeneity test, with pooling over the clusters.  In Table 2 we display 

some results from the pooled test, with different numbers of clusters. The conventional 

test of van Belle and Hughes, with 70 degrees of freedom, corresponds to the case of a 

single cluster ( )1k = .  The statistically significant result ( 0 01.p ≤ ) provides support 

for an effort to identify patterns.  Statistical significance disappears with two or more 

clusters based on the 2ZDiff criterion, while with the RTepsi criterion the test is 

significant with up to 3 clusters (suggesting at least 4 clusters).  We expect that, with 

2k ≥ , true false positive rate of the test will be lower than the nominal rate particularly 

with the 2ZDiffs criterion, which identifies clusters so as to minimize the test statistic. 

 

Figures 8 and 9 display temporal profiles for clusters extracted from each dendrogram, 

somewhat arbitrarily assuming 4 clusters.  Figure 10 displays profiles for the Pagan River 

and Jones Creek along with a cluster identified using each method, with a majority of 

stations from the Pagan River.  Coordinates of stations assigned to the 4 clusters are 

mapped in Figure 11.   The clusters appear to overlap broadly, displaying little indication 

of regional patterns.    
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Table 1.  Cross-classification of stations according to cluster under 
two criteria.   

 RTepsi Cluster 
  1 2 3 4 

1 18 11 2 0 
2 3 8 3 1 
3 1 5 2 8 

ZDiff2 
Cluster 

4 0 0 0 9 
 

 
Table 2.  Homogeneity of trend tests with pooling over clusters. (Clusters have 
been identified based on two different hierarchical cluster analysis procedures.) 

ZDiff 2 Criterion RTepsi Criterion K degrees of 
freedom pooled chi-

square statistic
p-value pooled chi-

square statistic
p-value 

1 70 182.2    <0.01 182.2     <0.01 
2 69 45.1      0.99 130.6     <0.01 
3 68 21.9      1.00 95.3       0.02 
4 67 13.8      1.00 73.5       0.27 
5 66 6.0      1.00 64.0       0.55 
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3. DISCUSSION 
 

The most pronounced pattern that we have detected, reflecting data for multiple stations, 

is a negative trend of DO for stations associated with the Pagan River and Jones Creek 

(PGN/JOG). The region that includes these stations has been sampled relatively 

intensively because of specific water quality concerns. Therefore it can be argued that a 

specific cluster for these streams is an artifact of high sampling density.  (If some other 

region were sampled with similar intensity, the result could be a cluster representing that 

region.)  Nevertheless, we think the results support that the methods provide efficient 

recognition of the most important patterns.  

 

Given that the Pagan River and Jones Creek empty into the James River estuary and 

nearby points, with neither emptying into the other, the correlation between the two 

streams may reflect the action of tides.   

 

Low DO can be associated with ecological degradation.  However, the results for 

PGN/JOG do not establish an ongoing pattern of degradation.  The pattern observed 

might reflect efforts to control nutrient enrichment, which often has the role of an 

ecological stressor.  For practical reasons, measurements are taken during daytime. In 

presence of high solar irradiation, nutrient enrichment may enhance photosynthetic 

activity and lead to high DO.  Such an increase in DO may be transient particularly in a 

warm stream.  The negative trends for PGN/JOG may be partly due to early spikes in 

DO, and the profiles may now be stable (Jason Hill, personal communication).  

Information on diurnal variation may help to evaluate this interpretation.   

 

Our limited empirical comparison does not seem to support a strong preference between 

the two criteria of temporal pattern similarity. However, in practice the relatively limited 

specificity of the 2ZDiffs criterion could be important in some situations.  Figure 12 

displays a hypothetical example where three stations have identical Z statistics, although 

the temporal profiles differ in ways that could be important, if such a pattern is 

encountered in practice.  In practice, a change in the sign of trend, as for Station A, might 
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reflect a change in land use or introduction or removal of a source of pollution.  In 

general, we expect that Z statistics are not reliable for capturing regional patterns in non-

monotone profiles.  Non-monotone, regional profiles potentially include local effects of 

climatic fluctuations, as well as changes in the sign and magnitude of trends. Results 

from separate analysis with Pagan River and Jones Creek data are consistent with a 

conclusion that the RTepsi criterion may capture more information in the temporal 

profiles, relevant for grouping stations. 

 

As is often the case in applications of hierarchical cluster analysis, inspection of the 

dendrograms in our case does not lead to optimism in the possibility of finding a simple, 

automated procedure for determining the number of clusters.  While a cluster with a large 

number of Pagan River stations seems well supported, an automated procedure that 

would identify such a cluster might identify additional clusters that are not as well 

supported.   

 

Figure 13 suggests a plausible approach for selecting the number of clusters when relying 

on hierarchical cluster analysis with the RTepsi criterion. The average within-cluster 

value, viewed as a measure of within-cluster homogeneity, is plotted against the number 

of clusters for 1-10 clusters.  Our average is computed in two stages, first averaging over 

pairs of stations within each cluster, then averaging the results from the first step, over 

clusters.  Formally, for k clusters 1, ... , kC C , we compute  

( )1 , 

1 1 RTepsi
ll

k

ij
l i j CCk N= ∈

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑  

where 
lCN is the number of stations in lC .  It is no surprise that homogeneity as measured 

increases with the number of clusters.  However, if the curve had showed evidence of a 

plateau the graph might have been taken to suggest a number of clusters, considering the 

use of analogous plots in multivariate analysis and statistical modeling. Unfortunately, 

the approach does not seem to suggest a definite number of clusters in our case.  A 

possible improvement might incorporate a penalty for increasing the number of clusters, 

perhaps based on an expected increase in averaged similarity.   



 18

 

 

We have focused on patterns in the data for a single water quality endpoint measured at 

multiple points in time.  Trend evaluation is typically required for multiple measured 

variables as well as for multiple stations.  Therefore we think it is desirable to explore 

multivariate techniques designed to simultaneously evaluate multiple measurements, 

particularly rank-based procedures (Lettenmeier, 1976; Rheem, 1992).  

 

Parametric and semiparametric alternatives to a rank-based approach may have the effect 

of clustering based on estimated profiles that smoothed, relative to the profiles of actual 

measurements. Such alternatives may include functional data analysis procedures 

(Henderson, 2006) or incorporation of spatial or temporal autocorrelations.  
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Figure 1  Monitoring stations for the James River basin.  A map of 

Virginia shows the locations of 71 monitoring stations.  A rectangular 

region that appears at the juncture of dotted lines in the Virginia map 

is enlarged in the upper figure, with axes representing degrees 

longitude and latitude.  
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Figure 2 Time series of dissolved oxygen (mg•L-1) for stations 

in the Pagan River Basin (PGN) and along the James River 

channel.  A shaded “envelope” indicates the range of 

concentrations for a given year.  Series for other stations are 

displayed for comparison, using dotted lines.
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Figure 3  Dendrogram based on the ZDiff2 dissimilarity criterion, Ward’s linkage criterion, and 

default scaling of edge lengths. 
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Figure 4  Dendrograms based on two criteria, ZDiff2 (top) and RTepsi (bottom).  For the upper plot the 

edge lengths have been transformed as described in the text.  Bracketed numbers in leaf labels are 

cluster indices for a 4-cluster solution. 
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Figure 5  Scatterplot comparing two distances for the 71 

stations.  Each point plotted corresponds to a different pair of 

stations.  The Spearman rank correlation is 0.50.
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Figure 6  Dendrograms for Pagan River (PGN) and Jones 

Creek (JOG) stations, based on the two criteria.  The upper plot 

relies on default  edge lengths. 
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Figure 7  Profiles for stations PGN-11 (upper) and JOG-1 

(lower) compared to the combined set of Pagan River and 

Jones Creek profiles. In each plot the profile for a station of 

interest is represented by a dotted line.  A solid line represents 

the annual median values for the combined set of Pagan River 

and Jones Creek profiles.
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Figure 8  Temporal profiles for individual stations in four 

clusters identified by clustering based on the ZDiff2 criterion. 
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Figure 9  Temporal profiles for individual stations in four 

clusters identified by clustering based on the RTepsi criterion.   
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Figure 10  Profiles for the Pagan River and Jones Creek (top) 

compared to Cluster 4 based on use of the ZDiff2 criterion 

(middle) and RTepsi criterion (bottom). 
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Figure 11  Coordinates of stations in 4 clusters identified by 

clustering based on the ZDiff2 criterion (top) and the RTepsi 

criterion (bottom).  For each solution Cluster 4 is composed 

primarily of Pagan River and Jones Creek stations, which are 

plotted separately in Figure 1.
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Figure 12  Hypothetical temporal profiles illustrating relative 

advantages between the two criteria.  The profiles are 

indistinguishable based on Z statistics, which equal zero for 

each.  However, the RTepsi is 1 comparing profiles A and C, 

and 0.47 for each other pair of stations.
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Figure 13  Relation of averaged RTepsi to number of clusters. 
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APPENDIX 1.  STATION CODES AND GEOGRAPHIC COORDINATES FOR 71 
STATIONS USED IN THE ANALYSIS. 

 

station – station code as used by Virginia Department of Environmental 

Quality  The first 2 characters are a basin code and the next the 3 a stream code.  

The final 5 characters give miles between the station and the mouth of the stream.   

 

station.1  - compact station code generated for labeling plots. The first 3 

letters are the stream code extracted from station.  The numeric code 

represents separate indexing of the stations included in our analyses, when sorted 

according to station (hence sorted on mileage from mouth).   

 

latitude, longitude – coordinates of the station. 

 

years data – number of years with one or more measurements, out of a maximum 

of 15.  
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Stations used in Analysis 
s 
t 
a 
t 
i 
o 
n 

s 
t 
a 
t 
i 
o 
n 
. 
1 

l 
a 
t 
i 
t 
u 
d 
e 

l 
o 
n 
g 
i 
t 
u 
d 
e 

y
e
a
r
s 

d
a
t
a

s 
t 
a 
t 
i 
o 
n 

s 
t 
a 
t 
i 
o 
n 
. 
1 

l 
a 
t 
i 
t 
u 
d 
e 

l 
o 
n 
g 
i 
t 
u 
d 
e 

y 
e 
a 
r 
s  
 
d 
a 
t 
a 

s 
t 
a 
t 
i 
o 
n 

s 
t 
a 
t 
i 
o 
n 
. 
1 

l 
a 
t 
i 
t 
u 
d 
e 

l 
o 
n 
g 
i 
t 
u 
d 
e 

y
e
a
r
s 

d
a
t
a

2-APP001.53 APP-1 37.31 -77.30 15 2-JKS023.61 JKS-2 37.79 -80.00 15 2-LAF001.15 LAF-1 36.91 -76.31 7 
2-APP012.79 APP-2 37.23 -77.42 15 2-JKS030.65 JKS-3 37.84 -79.99 13 2-LAF003.83 LAF-2 36.89 -76.28 7 
2-APP050.23 APP-3 37.35 -77.85 15 2-JKS058.60 JKS-4 38.04 -79.88 15 2-MCM005.12 MCM-1 38.10 -78.59 15 
2-APP118.04 APP-4 37.33 -78.47 15 2-JMS005.72 JMS-1 36.95 -76.39 15 2-MIC000.03 MIC-1 37.21 -76.74 13 
2-BCC004.71 BCC-1 38.07 -79.90 15 2-JMS013.10 JMS-2 36.99 -76.48 15 2-MRY014.78 MRY-1 37.75 -79.39 15 
2-BEN001.42 BEN-1 36.86 -76.48 15 2-JMS021.04 JMS-3 37.06 -76.59 15 2-NAN019.14 NAN-1 36.74 -76.58 15 
2-BLP000.79 BLP-1 38.20 -79.57 15 2-JMS032.59 JMS-4 37.20 -76.65 15 2-PGN000.00 PGN-1 37.01 -76.57 15 
2-BLY000.65 BLY-1 37.29 -77.26 15 2-JMS042.92 JMS-5 37.20 -76.78 15 2-PGN000.80 PGN-2 37.00 -76.57 15 
2-BUF002.10 BUF-1 37.61 -78.92 15 2-JMS055.94 JMS-6 37.27 -76.99 15 2-PGN001.19 PGN-3 37.00 -76.58 15 
2-CFP004.67 CFP-1 37.99 -79.49 15 2-JMS069.08 JMS-7 37.30 -77.13 15 2-PGN002.58 PGN-4 37.00 -76.61 15 
2-CHK002.17 CHK-1 37.26 -76.88 15 2-JMS074.44 JMS-8 37.32 -77.22 15 2-PGN003.57 PGN-5 36.99 -76.62 15 
2-CHK006.14 CHK-2 37.31 -76.87 15 2-JMS075.04 JMS-9 37.31 -77.23 15 2-PGN004.57 PGN-6 36.98 -76.62 15 
2-CHK023.64 CHK-3 37.40 -76.94 15 2-JMS099.30 JMS-10 37.40 -77.39 15 2-PGN005.46 PGN-7 36.99 -76.63 15 
2-CHK032.77 CHK-4 37.43 -77.04 14 2-JMS104.16 JMS-11 37.45 -77.42 15 2-PGN006.65 PGN-8 36.99 -76.65 15 
2-CHK062.57 CHK-5 37.60 -77.38 13 2-JMS110.30 JMS-12 37.53 -77.43 15 2-PGN007.44 PGN-9 37.00 -76.65 15 
2-CHK076.59 CHK-6 37.70 -77.51 14 2-JMS117.35 JMS-13 37.56 -77.54 15 2-PGN008.42 PGN-10 37.01 -76.66 15 
2-CLG000.23 CLG-1 37.23 -76.69 13 2-JMS157.28 JMS-14 37.67 -78.09 15 2-PGN010.07 PGN-11 37.02 -76.67 15 
2-CWP002.58 CWP-1 37.79 -79.76 15 2-JMS176.63 JMS-15 37.71 -78.30 15 2-PNY005.29 PNY-1 37.70 -79.03 14 
2-EBE002.98 EBE-1 36.84 -76.24 7 2-JMS189.31 JMS-16 37.80 -78.49 15 2-POT000.12 POT-1 37.75 -80.00 15 
2-ELI002.00 ELI-1 36.90 -76.34 15 2-JMS229.14 JMS-17 37.54 -78.83 14 2-POW000.60 POW-1 37.22 -76.78 13 
2-ELI004.79 ELI-2 36.87 -76.33 7 2-JMS258.54 JMS-18 37.41 -79.15 15 2-RVN015.97 RVN-1 37.86 -78.27 15 
2-FAC000.85 FAC-1 37.44 -77.44 15 2-JMS275.75 JMS-19 37.51 -79.33 15 2-SBE001.53 SBE-1 36.83 -76.29 13 
2-HRD011.57 HRD-1 37.81 -78.46 15 2-JMS282.28 JMS-20 37.59 -79.38 15 2-SGL001.00 SGL-1 36.74 -76.56 15 
2-JKS000.38 JKS-1 37.79 -79.78 15 2-JOG000.62 JOG-1 36.99 -76.56 15      
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APPENDIX 2.  UPDATED R FUNCTION LIBRARY  
 
 
asClass <- function(clusterList, N=NULL) 
{ 
  # Convert representation of a classification. 
  # In input a classification is a length-K (num. clusters) list of cluster 
  # objects where a cluster object is a vector of unit indices representing  
  # a single cluster. In output a classification is a length-N (=num. units) 
  # vector of class indices.  (D. Farrar 2006) 
 
  K <- length(clusterList) # num. clusters 
  if(is.null(N)) { N <- 0 ; for(k in 1:K) N <- N + length(clusterList[[k]]) } 
  Class <- rep(NA,N); 
  for(k in 1:K) Class[clusterList[[k]]] <- k 
  return(Class) 
} #- end def. 'asClass' ------------------------------------------------------- 
 
 
asClusterList<-function( 
  Class,       # vector of class indices (N*1) 
  K=NULL       # number of classes (if null then read from argument 1) 
  ) 
{ 
  # Inverse of asClass() (D. Farrar, 2006) 
 
  if(is.null(K)) K <- max(Class) 
  N <- length(Class) 
  outlist <- as.list(rep(NA,K)) 
 
  for (k in 1:K) { 
    result.k <- (1:N)[Class==k] 
    outlist[[k]] <- result.k 
  } 
 
  return(outlist) 
} #- end def 'asClusterList' -------------------------------------------------- 
 
dendpl <- function( 
 
  distmtx,           # symmetric matrix of distances 
  method,            # 'average', 'complete', 'ward', etc. 
  leaflabels=NULL,   # leaf labels 
  distlabel,         # axis label depends on distance 
  plot=TRUE 
  ) 
{ 
  # Generation and customized plotting of dendrogram using 
  # R functions hclust. 
  # D. Farrar 2006 
 
  D  <- as.dist(distmtx)              # base R function returns distance matrix 
  dendro <- hclust(D, method=method) # cluster object 
  dendro.relabeled <- dendro 
  if(!is.null(leaflabels)) dendro.relabeled$labels <- leaflabels 
  if(plot) plot(dendro.relabeled,ylab=distlabel,sub="",xlab="",main="",cex=0.75) 
 
  return(list(dendro=dendro, 
              dendro.relabeled=dendro.relabeled)) 
 
} # -- end fn defn ------------------------------------------------------------- 
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distance.Z2 <- function(Z) 
{ 
  # computes matrix of square differences from Z matrix 
  # Input is a vector of Z statistics with names 
  # D. Farrar 5/2006 
 
  if(sum(is.na(Z))) stop("distance.Z2 - missing input not permitted.") 
  statiset <- names(Z) 
  distmtx  <- matrix(0,nstation,nstation,dimnames=list(statiset,statiset)) 
  nstation <- length(Z) 
  for(i in 1:(nstation-1)) 
    for(j in (i+1):nstation) 
      distmtx[i,j] <- distmtx[j,i] <- (Z[i] - Z[j])^2 
 
  return(distmtx) 
} #-- end fn dfn. ------------------------------------------------------------- 
 
Ktau <- function(X,minN=2) { 
 
  # Kendall's tau and related statistics for multiple strata, e.g., stations. 
  # Arguments: 
  # 1) data matrix where e.g. rows correspond to stations and columns to years. 
  #    Missing values are permitted. 
  # 2) minimum number (non-missing) for each station 
  # D. Farrar 5/2006 
 
  numLocs <- dim(X)[1] 
  Z <- S <- tau <- rep(NA,numLocs)  # intialize 
  names(Z) <- rownames(X) 
  for(k in 1:numLocs)             # loop over stations 
  { 
    kData <-X[k,]                # data for station k in kth row 
    miss01<-is.na(kData)         # 1 or 0 according as missing or not 
    Nk <-sum(!miss01)            # years w/ data not missing for locn k 
    if(Nk >= minN)                # use locns w/at least the min num yrs 
    { 
      kData <- kData[!miss01]    # non-missing values for location 
      S.k <- pairs.k <- 0        # S, number of non-tied pairs 
      for(i in 1:(Nk-1)) 
      { 
        for(j in (i+1):Nk) 
        { 
          x.i <-kData[i] 
          x.j <-kData[j] 
          if (x.i != x.j)           # if [not tied] 
            pairs.k <- pairs.k + 1 
            S.k <- S.k + ((x.i <= x.j) - (x.j <= x.i)) 
        }   # for(j ... [over rows] 
      }     # for(i ... [over rows] 
      varSk <- Nk*(Nk-1)*(2*Nk+5)/18    # variances without tie adj 
      forAdj<- as.vector(table(kData))  # counts per tied group 
      is.gt1<- (forAdj > 1)             # flag tied groups size gt 1 
      if(any(is.gt1)) {                 # then do tie adjustment 
        forAdj<- forAdj[is.gt1] 
        varSk <- varSk - (1/18)*sum(forAdj*(forAdj-1)*(2*forAdj+5)) 
        }  # if(any( ... [tie adj] 
      tau[k] <- S.k / pairs.k 
      Z[k] <- (S.k - (S.k>0) + (S.k<0))/sqrt(varSk) 
    }     # if(Nk>=minN) [enough data for stats ] 
  }       # for k in 1...[over stations] 
 
  return(list(Z=Z,tau=tau)) 
 
} #-- end fn. defn. ------------------------------------------------------ 
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plotEnvelope <- function( 
 
   x,                 # (N*T) matrix where each row is a profile 
   xforplot,          # year series 
   forEnvelope=NULL,  # (N*T) logical - which rows to use for envelope 
   asBackground=NULL, # (N*T) logical - which plot as lines in background 
   asForeground=NULL, # (N*T) logical - which plot as lines atop envelope 
   plotMedian=F,      # Logical - plot only medians for envelope set? 
   ylim=NULL, xlab="year", ylab=NULL, main="",  # graph params 
   col=c( background="maroon4", foreground="grey" ) 
   ) 
{ 
  # superimpose plots of multiple series, divided into 3 subsets, 
  # any of which may be empty.  Optionally include median 
  # of encvelope set. 
  # remark:  I like to log10 the ordinate, but I do that external to 
  # the function, and pass the logs to the function. (DF)( 
  # D. Farrar 2006 
 
  numprofiles <- nrow(x) 
 
  #-- line type for foreground lines 
 
  if(plotMedian) lty <- "dashed" else lty <- "solid" 
 
  #-- plot axes only 
 
  plot(xforplot,x[1,],type="n", ylim=ylim, xlab=xlab,ylab=ylab, main=main) 
 
  #-- dotted lines for background profiles 
 
  if(!is.null(asBackground)) for(i in 1:numprofiles) if(asBackground[i]) 
    points( 
          xforplot,x[i,],type="l",lty="dotted",col=col[[1]] 
          ) 
 
  #-- envelope for specified set 
 
 
  if(!is.null(forEnvelope)) { 
 
    forEnvM <- x[forEnvelope,] 
    envL <- apply(forEnvM,2,function(x) min(x,na.rm=T)) 
    envU <- apply(forEnvM,2,function(x) max(x,na.rm=T)) 
    pgon <- rbind( cbind( xforplot, envL), 
                   cbind( rev(xforplot), rev(envU)) 
                 ) 
    polygon(pgon,border=plotMedian,col=col[[2]]) 
    # points(xforplot,envL,type="l") 
    # points(xforplot,envU,type="l") 
  } 
 
  #-- foreground profiles 
 
  if(!is.null(asForeground)) for(i in 1:numprofiles) if(asForeground[i]) 
     points( 
           xforplot,x[i,],type="l",lty=lty 
           ) 
 
  #-- line for means 
 
  if(plotMedian) 
    points(xforplot,apply(forEnvM,2,function(x) median(x,na.rm=T)),type="l") 
} 
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refAlign <- function(  # align classification relative to reference classfn. 
 
  groups1,  # reference classification formatted as vector of class indices 
  groups2   # classification to be aligned 
 
  ) 
{ 
  # classifications should be in list format 
  # (A cluster is a vector of unit indices.  A classification is a list 
  # of clusters.) 
  # D. Farrar 2006 
 
  # function to compute indidence matrix for a classification 
 
  N <- length(groups1) 
  K <- max(groups1) 
 
  computeZ <- function( 
    classification )  # vector gives class index for each unit 
  { 
    Z <- matrix(0, N, K) 
    for (j in 1:K) Z[classification==j,j] <- 1 
    return(Z) 
  } 
 
  require(gregmisc) 
  perms <- permutations(K,K)[-1,]  # enumerate permuttns neglecting identity 
  numperms <- nrow(perms) 
 
  # incidence matrices for each classification 
 
  Z.1 <- computeZ(groups1) 
  Z.2 <- computeZ(groups2) 
 
  cat("\nreference classification with incidence matrix:\n") ; 
  print(cbind(groups1,Z.1)[1:7,]);cat(" . . . \n") 
  cat("\nalign:\n") ; 
  print(cbind(groups2,Z.2)[1:7,]);cat(" . . . \n") 
 
  algn.table <- crossprod(Z.1,Z.2)    # alignment matrix 
  cat("\nalignment matrix:\n") ; print(algn.table) 
 
  currtrace  <- sum(diag(algn.table)) # trace current alignment 
  cat("\ntrace = ",currtrace) 
  tablesum   <- sum(algn.table)       # sum for alignment matrix 
 
  permbest <- 1:K 
  ispermuted <- F 
 
  if(K==2 & (currtrace < tablesum/2) ) 
  { 
    ispermuted <- T 
    permbest <- c(2,1) 
  } else {                            # (K>2) evaluate all permutations 
    traceByPerm <- rep(0,numperms)    # initialization 
    for(k in 1:numperms) 
      for(l in 1:K) traceByPerm[k] <- traceByPerm[k] + algn.table[perms[k,l],l] 
    if(currtrace < max(traceByPerm)) {  # update incidence matrix and alignment 
      ispermuted <- T 
      bestperm <- perms[which.max(traceByPerm),] 
    } 
  } # K>2 
 
  cat("\nbest label permutation = ", bestperm, "\n") 
  cat("\nalignment matrix:\n") 
  print(algn.table[,bestperm]) 
 
  groups2x <- rep(NA,N) 
  for(j in 1:K) groups2x[groups2==j] <- bestperm[j] 
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  return(list(ispermuted=ispermuted,groups=groups2x)) 
 
} #--[ end fn. defn. ]----------------------------------------- 
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simi.RTepsi <- function( 
  dmtx,         # data matrix stations * years with row names 
  minyrs=2      # required minimum years data with values in both profiles 
  ) 
{ 
  # Compute a matrix of RTepsi subject to minimum count of years in common 
  # with values not missing for each pair of stations.  In case of missing 
  # values in the matrix, delete stations until there are none missing. 
  # Calls XCorrFunc for each pair of stations. 
  # D. Farrar 2006 
 
  dmtx <- as.matrix(dmtx) 
  statiset <- rownames(dmtx) 
  nstation <- nrow(dmtx) 
  XCorrM <- matrix(NA,nstation,nstation,dimnames=list(statiset,statiset)) 
  diag(XCorrM) <- 1 
  for(i in 1:(nstation-1)) { 
    y.i <- as.vector(dmtx[i,]) 
    for(j in (i+1):nstation) { 
      y.j <- as.vector(dmtx[j,]) 
      canUse <- !(is.na(y.i)|is.na(y.j)) 
      if(sum(canUse) >= minyrs) { 
        both <- cbind(y.i,y.j)[canUse,] 
        c.ij <- XCorrFunc(both[,1],both[,2]) 
        XCorrM[i,j] <- XCorrM[j,i] <- c.ij 
      }#if 
    }# for(j ... 
  }# for(i ... 
 
  if(any(is.na(XCorrM))) { 
    cat("\nDeleting stations from RTepsi matrix\n") 
    while(any(is.na(XCorrM))>0) { 
      n <- ncol(XCorrM) 
      if(n==1) { 
        stop("!! too many stations excluded") 
      } else { 
        numnotNA <- apply(XCorrM,1,function(x) sum(!is.na(x))) 
        delstatn <- which.min(numnotNA) 
        cat("\ndeleted:",colnames(XCorrM)[delstatn]) 
        XCorrM <- XCorrM[-delstatn,-delstatn] 
      }#if 
    }#while 
  }#if 
 
  return(XCorrM) 
 
} #-- end fn dfn. ------------------------------------------------------------- 
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vbh <- function(Z,loquacious=T) { 
 
  # van Belle & Hughes test for heterogeneity of trend. 
  # Input vector of Z's (some missing ok).  Returns p-value. 
  # If second arg is TRUE then print some output. 
  # D. Farrar 2006 
 
  has.Z <- !is.na(Z)   # id which not missing 
  m <- sum(has.Z) 
  chiSqHom <- pHomo <- pTotal <- NA 
  if(m >= 1) { 
    Z <- Z[has.Z] 
    chiSqTot <- sum(Z^2)      # total chi-square 
    chiSqTrd <- m*mean(Z)^2   # trend chi-square 
    pTotal<- pchisq(chiSqTot, m, lower.tail=F) 
    if(m >= 2) { 
      chiSqHom <- chiSqTot - chiSqTrd   # homogeneity chi-square 
      pHomo <- pchisq(chiSqHom, m-1, lower.tail=F) 
    } 
  } 
 
  if(loquacious) cat( 
     "\nchi-square\nTotal\t",chiSqTot,"\nTrend\t",chiSqTrd,"\nHomog\t", 
     chiSqHom,"\np=\t",pHomo ) 
 
  return(list(pHomo=pHomo, chiSqHom=chiSqHom, pTotal=pTotal)) 
 
} #-- end fn. defn. ----------------------------------------------------------- 
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XCorrFunc <- function(v1,v2,minNotNA=2) { 
 
  # Kendall-type cross-correlation between two series 
  # 3rd arg is minimum num not missing in both vectors 
  # input vectors must be equal in length. 
  # See also : simi.RTepsi uses for computing distance matrix. 
  # D. Farrar 2006 
 
  nonmissing <- !(is.na(v1)|is.na(v2)) 
  v1 <- v1[nonmissing] 
  v2 <- v2[nonmissing] 
  n <- length(v1) 
 
  if(n < minNotNA) { 
    retval <- NA 
    if(minNotNA==2) 
      cat("\n(XCorrFunc): !!comparing series of length < 2\n") 
  } else { 
    npairs<-n*(n-1)/2       # pairs with neither missing 
    concord <- 0            # count of concordant pairs 
    for(i in 1:(n-1)) { 
      for(j in (i+1):n) 
        concord <- concord + 
             ( (v1[j]-v1[i])*(v2[j]-v2[i]) > 0 ) + 
             ( (v1[j]==v1[i])&(v2[j]==v2[i]) ) 
    }      # for(i ... 
  retval <- concord / npairs 
  } 
 
  return(retval)            # fraction of pairs concordant 
 
} #---[ end fn. defn. ]-------------------------------------------------------- 
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ZDiffDendro <- function( 
  D,            # matrix of distances (n*n) 
  leaflabels,   # labels for dendrogram leaves 
  plot=T 
  ) 
{ 
 
  # Dendrogram for ZDiff with Ward's method and rescaled branch lengths 
  # D. Farrar 2006 
 
  #-- unscaled dendrogram 
 
  ddobj<-dendpl(D, method="ward", leaflabels, 
                distlabel=expression(Zdiff ^2), 
                plot=F)$dendro.relabeled 
 
  lKid   <- ddobj$merge[,1] 
  rKid   <- ddobj$merge[,2] 
  labels <- ddobj$labels 
  height <- ddobj$height 
 
  n <- length(labels) 
  n.node <- chisq.node <- rep(0,n-1)      # count per internal node 
 
  retfunc1 <- function(i) {  # recursively compute node count 
    l <- lKid[i]; r <- rKid[i] 
    if(l<0) lcontrib <- 1 else lcontrib <- retfunc1(l) 
    if(r<0) rcontrib <- 1 else rcontrib <- retfunc1(r) 
    return(lcontrib+rcontrib) 
  } 
  retfunc2 <- function(i) {  # recurseively compute node chi 
    retval <- height[i]/2 
    l <- lKid[i]; r <- rKid[i] 
    if(l>0) retval <- retval + retfunc2(l) 
    if(r>0) retval <- retval + retfunc2(r) 
    return(retval) 
  } 
 
  for(i in 1:(n-1)) { 
    n.node[i] <- retfunc1(i) 
    chisq.node[i] <- retfunc2(i) 
  } 
 
  # p.node <- pchisq(chisq.node,n.node-1,lower.tail=F) 
 
  ddobj2 <- ddobj 
  ddobj2$height <- sqrt(chisq.node / (n.node-1)) 
  # ddobj2$labels <- station.1 
 
  if(plot) { 
 
    mar.0 <- par()$mar  # widen left margin to take in axis label 
    par(mar=mar.0*c(1, 1.1, 1,1)) 
 
    plot(ddobj2, main="", sub="", xlab="", 
      ylab=expression(sqrt(CHISQ[H] / df) ), 
      cex=0.75,cex.axis=0.1) 
 
    abline(h=1,lty="dotted") 
 
    par(mar=mar.0) 
  } 
  dendro<-ddobj2 
  return(dendro) 
} #---------------------------------------------------------------------------- 
 
 

 
 


