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Abstract 

In typical normal theory regression, the assumption of homogeneity of variances is often not 

appropriate.  When heteroscedasticity exists, instead of treating the variances as a nuisance and 

transforming away the heterogeneity, the structure of the variances may be of interest and it is 

desirable to model the variances.  Modeling both the mean and variance is commonly referred to as 

dual modeling.  In parametric dual modeling, estimation of the mean and variance parameters are 

interrelated.  When one or both of the models (the mean or variance model) are misspecified, 

parametric dual modeling can lead to faulty inferences.  An alternative to parametric dual modeling 

is nonparametric dual modeling.  However, nonparametric techniques often result in estimates that 

are characterized by high variability and ignore important knowledge that the user may have 

regarding the process.  We develop a dual modeling approach [Dual Model Robust Regression 

(DMRR)], which is robust to user misspecification of the mean and/or variance models. Numerical 

and asymptotic results illustrate the advantages of DMRR over several other dual model procedures. 
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 When estimating a regression function, nonparametric techniques such as local polynomial 

regression tend to be useful when the trend in the data cannot be captured parametrically.  However, 

nonparametric fits are often characterized by too much variability and for a small data set, the 

estimate tends to fit the data too closely.  When there is no replication and heteroscedasticity is 

present, residuals from the estimated mean are often used to model the response variance.  

However, in small to moderately sized data sets, if a nonparametric smooth is utilized for the mean 

and observations are fit too closely, there may not be enough information in the residuals to 

adequately estimate the variance function.  Parametric techniques, on the other hand, provide a less 

variable estimate since the fits are anchored by the stability of the user supplied model.  However, 

the proposed parametric form may be inadequate over certain regions of the data, resulting in biased 

fits.  Bias in the estimate of the mean results in contaminated residuals with which to estimate the 

variance function [see Robinson and Birch (2000)].   

Einsporn and Birch (1993) propose a semiparametric method for modeling the mean 

response for assumed constant error variance.  Their technique, model robust regression 1 (MRR1), 

combines parametric and nonparametric fits to the raw data in a convex combination via a mixing 

parameter, λ .  Mays, Birch, and Einsporn (2000) introduced model robust regression 2 (MRR2) as 

an improvement for modeling the mean with constant variance.  Similar to MRR1, MRR2 combines 

a parametric fit and a nonparametric fit via a mixing parameter; however, the parametric fit is to the 

raw data whereas the nonparametric fit is to the residuals from the parametric estimate.  In both 

cases, MRR1 and MRR2, the result is an estimated mean response which is robust to parametric 

model misspecification and has less variation than a purely nonparametric estimate.  Mays, Birch, 

and Starnes (2001), henceforth referred to as MBS, present asymptotic results for the MRR 

techniques. In this manuscript we extend the MRR techniques to the dual modeling problem where 

one is not only interested in modeling the underlying mean function but is also interested in 
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simultaneously estimating the underlying variance function.  The robust estimate to the mean is 

termed means model robust regression (MMRR) and the robust variance fit is termed variance 

model robust regression (VMRR).   

 Holst, Hossjer , Bjorklund , Ragnarson, and Edner (1996) discuss the use of local 

polynomial regression for evaluation of the concentration of atmospheric atomic mercury measured 

with LIDAR [see Sigrist (1994)].  The data are plotted in Figure 1(a).  Figure 1(b) displays the 

MMRR fit to the LIDAR data set.  Using the squared MMRR residuals, the VMRR variance fit is 

then obtained. Figure 1(c) shows the squared MMRR residuals along with the proposed VMRR 

variance estimate, a local polynomial variance fit, and a parametric variance fit.  Advantages of the 

proposed semiparametric fitting are clearly seen in Figure 1(c).  Note that the nonparametric (local 

polynomial) fit’s variability is seen in the ‘wiggles’ when X is between 650 and 730 and the 

parametric fit (based on gamma regression) is not flexible enough to capture certain anomalies in 

the data.  The VMRR estimate provides a ‘middle of the road’ fit to the data as it achieves an 

optimal balance of bias and variance.  

 In the next section we present a general model framework for the dual model and then 

review the various parametric and nonparametric approaches to dual modeling.  It is important to 

note that approaches to dual modeling often depend upon whether or not replication is present.  

Here, we consider experimental studies which do not involve replication.  In Section 3, we provide 

the details of dual model robust regression (DMRR).  In Section 4, the asymptotic properties of 

DMRR are discussed and in Section 5 we discuss data-driven bandwidth and mixing parameter 

selection. In Section 6 the proposed semiparametric approach is compared to popular parametric 

and nonparametric competitors via a simulation study.   

2.  Overview of Dual Model Regression 
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A common approach to heteroscedastic data is to assume that, like the mean, the variance 

changes systematically and smoothly with a set of regressors (potentially different from those 

influencing the mean).  In general, the dual model can be expressed as 

Means Model:  ( ) ( )1/ 2
1 1y  = x  ... x  + g z  ... zi i ki i li ih ε          

        ( ) ( )* 1/2 *=  + gi i ih εx z  

Variance Model:    ( )2 * = gi iσ z        

where iε  is the error term at the ith observation (i = 1, …, n), *
ix  is a k x 1 vector of means model 

regressors, and *
iz  denotes the l x 1 vector of variance model regressors.  It is assumed that the 

iε are i.i.d. N(0,1).  There are several approaches to the analysis of a dual model, depending on 

whether or not the researcher expresses the mean and/or variance functions in closed form.   

Historically, dual modeling has been approached in the following ways:   

 1. Parametric Dual Modeling:  A purely parametric approach involves the user specifying 

functional forms for both the mean and variance functions.  In what could be considered an off-the-

shelf parametric model, the user assumes a known linear model for the process mean 

( ) ( )* ' '
1   , where = 1 x  ... xi i i i kih = x x xβ , and a known log-linear relationship for the variance 

( ) { } ( )* ' '
1 = exp , where  = 1 z  ... zi i i i lig  z z zθ .   Regarding notation, β  is a (k+1) x 1 vector of 

means model parameters and θ  is a (l + 1) x 1 vector of variance model parameters.  Aitkin (1987) 

proposed an iterative estimation procedure for this dual model.  The iterative analysis begins with 

an initial ordinary least squares (OLS) fit to the mean and then uses gamma regression to fit an 

exponential function to the squared OLS residuals.  The mean and variance model parameters are 

re-estimated via estimated weighted least squares (EWLS) and the entire iterative process continues 

until convergence of the parameter estimates in the means model.  At convergence, these mean and 
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variance model estimates are the maximum likelihood estimates provided that the errors are 

normally distributed.  Valid inferences from such an analysis depend heavily on the assumption that 

the specified forms of h and g are sufficient across the entire range of the data.  If h and g are 

misspecified, any inferences from the analysis become suspect. 

 2. Nonparametric Residual-Based Dual Modeling: The mean is estimated parametrically or 

nonparametrically, depending on the researcher’s knowledge regarding the underlying form of the 

means model, and then a nonparametric technique is used to smooth the means model residuals for 

variance estimation.  Specifically, Carroll (1982) uses a parametric model for h while Hall and 

Carroll (1989) consider both parametric and nonparametric estimation of h and then use kernel 

regression [see Hardle  (1990)] to estimate g.  Carroll and Ruppert (1988) and Ruppert, Wand, 

Holst and Hossjer  (1997) discuss the use of bias-corrected local polynomial regression to estimate 

the underlying variance function, g.  Ruppert et. al (1997). point out that local polynomial methods 

for smoothing are preferable to kernel smoothing because of their automatic boundary bias 

correction and adaptivity to unequally spaced designs.   

                3.   Nonparametric Difference-Based Dual Modeling:  Muller and Stadtmuller  (1987 and 

1993) propose a purely nonparametric estimate of the dual model in which the mean is estimated 

via kernel regression and then a difference-based estimate of the variance is used.  Difference-based 

variance estimation is appealing because the estimate of the variance does not depend on the 

estimated mean function.  Instead, the variance is estimated using a local polynomial smooth of the 

squared pseudo-residuals. Pseudo-residuals are constructed as weighted averages of fixed 

neighborhoods of the observed responses (the y 'si ).  Pseudo-residuals were originally proposed for 

homoscedastic data by Gasser, Sroka, and Jennen-Steinmetz (1986).  

3.  Dual Model Robust Regression 
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The proposed technique extends the MRR procedures (MRR1 and MRR2) of Einsporn and 

Birch (1993) and Mays, Birch, and Einsporn (2000), respectively, to the unreplicated dual modeling 

problem.  Dual model robust regression (DMRR) provides an estimate of the mean (MMRR) as 

well as an estimate of variance (VMRR) that is simultaneously robust to a misspecified means 

model and a misspecified variance model. The MRR procedures are based on the assumption that 

any regression model can be expressed as 

              ( )*y  =  + i i ih εx                                              

                         '= ix β ( )*+  + i if εx  

where '
ix β  is the user-supplied parametric portion (a linear model is used here, though, in general 

the user-supplied model may be nonlinear) and ( )*
if x  denotes a  “lack-of-fit” component.  The iε  

are assumed to be independent and normally distributed with mean zero and constant variance, 2σ .  

The MRR1 estimate of the mean is then given in matrix notation as 

          ( )(MRR1) (LLR) (OLS)ˆ ˆ ˆ = 1  λ λ+ −y y y               (3.1) 

             ( )(LLR) (OLS) (MRR1)= 1  = λ λ + − H H y H y  

where [ ]0,1λ ∈ , (OLS)ŷ  denotes the nx1 vector of ordinary least squares (OLS) fits to the data, (LLR)ŷ  

represents the nx1 vector of local linear regression (LLR) fits to the data (LLR is used here, though, 

in general, any nonparametric method utilizing a “smoother” matrix may be used), (OLS)H  is the 

OLS hat matrix, and (LLR)H  and  (MRR1)H  are the “smoother” matrices for local linear regression and 

MRR1, respectively.  The mixing parameter, λ , is chosen to adjust the parametric model fits, which 

may be inadequate, with an appropriate amount of structure contained in the LLR fit to the data.  

The choice of λ  involves a bias-variance trade-off and is discussed in Section 5.   
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 The MRR2 approach of Mays, Birch, and Einsporn (2000) also combines a parametric fit 

and a nonparametric fit via a mixing parameter; however, the parametric fit is to the raw data (as in 

MRR1) while the nonparametric fit is to the residuals from the parametric fit.  The nx1 vector of 

residuals, r, represents the structure in the mean which is not captured by the user specified 

parametric model.  The residuals are fit nonparametrically via LLR resulting in the following vector 

of smoothed residuals 

    (LLR)ˆ r=r H r  

where (LLR)
rH is the LLR smoother matrix with the responses being the residuals from the OLS fit to 

the raw data.  The MRR2 estimate of the mean is then obtained by adding a portion, λ , of the LLR 

smoothed residuals back to the original OLS fit, yielding 

    (MRR2) (OLS) (LLR)ˆˆ ˆ=  λ+y y r               (3.2) 

                         ( )(OLS) (LLR) (OLS) (MRR2)=    = rλ + − H H I H y H y  

where [ ]0,1λ ∈ .  The choice of λ is discussed in Section 5.  MBS show that the MRR1 and MRR2 

estimates of the mean possess superior integrated mean squared error properties over both (OLS)ŷ  (if 

the user’s model is misspecified) and (LLR)ŷ (the fits obtained by LLR or any other appropriate 

nonparametric smooth).  In the discussion to follow, we extend the MRR approaches to the dual 

modeling problem.  The proposed DMRR technique contributes to the growing list of literature 

dealing with semiparametric regression.  Such references include work by Speckman (1988), 

Burman and Chaudhuri (1992), Rahman, Gokhale, and Ullah (1997),  and Fan and Ullah (1999), 

Ruppert, Wand, and Carroll (2003), among many others. 

 

3.1  The Model 
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In developing the DMRR technique, it is helpful to consider the process mean and variance 

as functions which can be expressed in two components:  a user supplied parametric component and 

a “lack of fit” component which represents the portion of the mean and variance functions which 

cannot be captured parametrically.  We decompose the mean into a parametric linear portion and a 

portion not captured by the linear specification.  In estimating the variance we consider an 

exponential specification and a portion not captured by this specification.  It should be pointed out 

that DMRR is not limited to these particular parametric specifications but for simplicity of 

presentation, these functions are explicitly considered here. The true underlying dual model can 

then be written as follows: 

 Means Model:    yi  = ( ) ( )* 1/ 2 *   gi i ih ε+x z      

               =   '
ix β  + ( ) ( )* 1/2 *  gi i if ε+x z     

Variance Model: 2
iσ = ( )*g iz                    

                                            =  { }'exp iz θ  + ( )*
il z . 

The lack of fit components are given by ( )*
if x  in the means model and ( )*

il z  in the variance 

model and  f and l are considered to be unknown (smooth) regression functions.   We assume a one-

regressor dual model, implying that ( )'2= 1 x  x  ...i i ix =  ( )'2= 1 z  z  ...i i iz .  It should be noted that 

the DMRR technique can easily be extended to situations involving more than one regressor and 

other types of parametric specifications for the mean and variance. 

3.2 Model Robust Mean Estimation 

 To estimate the means model, we propose means model robust regression (MMRR).  

MMRR is a simple extension of the MRR2 procedure where the OLS mean estimate in MRR2 is 

replaced with an estimated weighted least squares (EWLS) estimate. Weights are taken to be the 
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estimated variances at each of the n data points (denoted below as the diagonal elements of the 

matrix V̂ ).  Using local linear regression (LLR) to smooth the EWLS  residuals, the n x 1 vector of  

means model robust estimates (MMRR) is then given as: 

   (MMRR) (MMRR)ˆ = y H y         

where  

( )(MMRR) (EWLS) (LLR) (EWLS)=  +  -  bµµλ 
 H H H I H .                 

Here,  ( )-1(EWLS) ' -1 ' -1ˆ ˆ = H X X V X X V  and ( )

( )

( )

1

LLR

LLR

LLR
n

b

b

b

µ

µ

µ

′ 
 
 =
 ′ 
 

h

H

h

 where 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )LLR LLR LLR LLR LLR LLR LLR
ib i i i iµ

−′ ′ ′=
1

h x X W x X x W x , ( )

( )

( )

LLR

LLR

LLR
n

′ 
 

=  
 ′  

1x
X

x

 is the model matrix 

for LLR, with ( ) ( )LLR 1i ix′ =x ,  and ( ) ( )LLR
iW x = ( )(ker) (ker)

1h  , ..., hi indiag  where 

  (ker)

1

x -x
K

h  = 
x -x

K

i j

ij n
i j

j

b

b

µ

µ=

 
  
 

 
  
 

∑
.  The function K(.) denotes a univariate kernel function. The means model 

mixing parameter is [ ] 0,1µλ ∈  and bµ  denotes a global bandwidth used to smooth the EWLS 

residuals.  Choice of µλ and bµ  is discussed in Section 5.  The choice of kernel function is not 

crucial to the performance of the nonparametric estimator [see Simonoff (1996)] and thus, for 

convenience, we use the simplified Gaussian kernel, ( ) 2uK u e−= for all nonparametric estimators 

discussed.  
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 The estimated variances on the diagonal of V̂ will be obtained from the model robust 

variance estimate, which is discussed in the next subsection.  The means model mixing parameter, 

µλ , serves the same purpose as that of λ from the MRR2 procedure in that it increases from 0 to 1 

as the amount of model misspecification in the parametric increases.  The subscript ‘ µ ’ is to 

distinguish this mixing parameter from the one that will be used in the robust variance estimate. 

3.3 Model Robust Variance Estimation 

 To estimate the variance function in the dual model, we propose variance model robust 

regression (VMRR), a residual-based variance estimate.  The VMRR procedure can be thought of 

as a robust extension to the parametric estimate proposed by Aitkin (1987).  Assuming a correct 

specification of the means model, Aitkin estimates the variance model parameters (θ ) via joint 

maximum likelihood.  Aitkin showed that this approach is equivalent to a gamma regression in 

which one regresses the squared residuals from the means fit on some appropriate function of the 

variance regressors.  Similar to Aitkin we choose the exponential function.  From standard 

generalized linear models (GLM) theory [see McCullagh and Nelder (1994)], it follows that the 

estimated variance model parameters at the sth iteration are given by 

( ) { }( )2 (EWLS) 2 (EWLS)

-1(GLM) (GLM) -1 -1 2 (EWLS) (GLM)
-1 -1 -1 -1 -1e , -1 e , -1

ˆ ˆ ˆ   + '   '  -exps s s s s ss s
= Z∆ V ∆ Z Z∆ V e Zθ θ θ (3.3) 

where Z is the model matrix of variance regressors, 2 (EWLS)e is the n x 1 vector of squared EWLS 

residuals from the means model, -1s∆ = ( )1 2, , , ndiag δ δ δ  with =iδ  

( ) ( ) ( )
-1

' ' '
1ˆ ˆ =

ˆ ˆ ˆexp  =  exp
s

i i i s−
 
 z z z

θ θ
∂ θ ∂ θ θ , and 2 (EWLS)e , -1s

V  is the nxn diagonal matrix of variances of 

the squared EWLS residuals given by ( )' '
1 1 1

ˆ ˆ2exp{2 } , ..., 2exp{2 }s n sdiag − −z zθ θ .  At convergence, the 

GLM variance estimate at the ith observation is given by 2 (GLM)ˆ iσ = { }' (GLM)ˆexp iz θ . 
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If the specified means model is insufficient, then the residuals from the means fit not only 

contain information regarding the process variance, but they are also contaminated with the lack-of-

fit from the parametric means estimate.  The result is a variance estimate which contains substantial 

bias [Robinson and Birch (2000)].  A nonparametric estimate of the mean also presents potential 

problems for a residual-based variance estimate.  In many situations, the nonparametric estimate can 

fit the data too closely, thus leaving meager residuals with which to model the variance.  This 

manifests itself in an underfit variance model. 

The MMRR estimate of the mean is intended not only to offer an estimate of the mean 

which is robust to model misspecification but also an estimate which is less variable than a purely 

nonparametric fit.  Thus, it seems natural to use the squared MMRR residuals as variance model 

data.  The residuals from the MMRR estimate are given as 

 (MMRR) (EWLS)ˆ =  - e y Xβ (LLR)-  bµµλ H ( )(EWLS)ˆ-  y Xβ .   (3.4)                

Notice that if there is no misspecification of the means model then µλ should be zero and the 

MMRR residuals will simply be the parametric (EWLS) residuals.  However, if the specified means 

model is insufficient, µλ should be closer to 1, and the MMRR fit will more resemble a purely 

nonparametric fit. 

 Like MMRR, the variance model robust regression (VMRR) procedure combines a 

parametric and nonparametric fit.  We use an MRR1 fit for the robust variance estimate since there 

is nothing to guarantee a positive variance estimate when using an MRR2 fit.  Recall that MRR1 

involves combining parametric and nonparametric estimates of the data to form the model robust 

estimate. The VMRR procedure begins by regressing the squared MMRR residuals on an 

exponential function of the variance model regressors [ { }exp Zθ  in this discussion] to obtain a 

parametric (GLM) fit.  We then obtain a purely nonparametric fit to the squared MMRR residuals 
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via LLR.  The VMMR estimate is then a convex combination of the GLM and LLR fits via a 

variance model mixing parameter σλ . The nx1 vector of VMRR variance estimates is given by 

2 (VMRR)ˆ  =σ ( ) { }(LLR) 2(MMRR) (GLM)ˆ1 expbσσ σλ λ+ −H e Zθ               (3.5) 

where ( )

( )

1

(llr)

LLR

llr

b

nb

b

′ 
 
 =  

′ 
  

σ

σ

σ

h

H

h

 with ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )llr llr llr llr llr llr(llr)
ib i i i i

−′ ′ ′=
σ

1
h z Z W z Z z W z  , ( )

( )

( )

llr

llr

llr
n

′ 
 

=  
 ′  

1z
Z

z

 is 

the model matrix for LLR, with ( ) ( )llr 1i iz′ =z , and  ( )(llr)
iW z  = ( )(ker) (ker)

1h  , ..., hi indiag  where 

(ker)

=1

z -z
K

h  = 
z -z

K

i j

ij n
i j

j

b

b

σ

σ

 
 
 

 
 
 

∑
.  As was the case for the MMRR estimate, K(.) denotes the simplified 

Gaussian kernel.  Note that when estimating both the mean and variance nonparametrically, a 

different kernel function may be used for the mean than for the variance. The variance model 

mixing parameter is [ ] 0,1σλ ∈  and bσ  denotes a global bandwidth used to smooth the variance 

residuals from the GLM variance fit.  Choice of σλ and bσ  is discussed in Section 5. 

3.4  DMRR Algorithm 

 Since the mean and variance estimates are interdependent (means model estimates require 

estimated variances and the data for the variance model are the squared means model residuals), it 

seems logical that estimation of the dual model should take place within a single, iterative 

algorithm.  DMRR combines the robust means fit (MMRR) with the robust variance fit (VMRR) in 

a single, iteratively reweighted least squares algorithm.  The algorithm is given as follows: 

1.    Let ( )2 2 2
1 2

ˆ ˆ ˆ ˆV = diag , ,  , nσ σ σ  where 2ˆ = 1σ i , i=1,…,n.    
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2. Using EWLS, obtain the parametric estimate of the means model :

 ( ) 1(EWLS) ' (EWLS) 'ˆ ˆ ˆŷ  =  = 
−' -1 ' -1x x X  V  X X  V yi i iβ , i=1,…,n.  Let  (EWLS)ŷ  denote the nx1 

          vector of EWLS fits.     

3. Form the residuals from the fit found in Step 2 , ( )(EWLS) (EWLS)ˆ=  - e y y , and perform 

local linear regression on this set of residuals, obtaining (llr)' (EWLS)r̂  = 
bi iµ µ

h e , where 

(llr)'
bi µ

h is the ith row of (LLR)
bµ

H and (EWLS)e is the nx1 vector of EWLS residuals. 

4. Obtain the MMRR fit to the means model, written as: (MMRR) (EWLS) ˆˆ ˆ=  +  
µµλy y r where 

the ith element of ˆ
µ

r is r̂iµ
from Step 3.  

5. Form the squared residuals from the MMRR fit to the mean, obtaining :  

( )22 (MMRR) (MMRR)ˆe  = y  - yi i i , i=1,…,n. Let ( )2 MMRRe  denote the nx1 vector of squared 

MMRR residuals. 

6.  The GLM model for estimating the variance is:   

( )2 (MMRR)e =iφ   '
iz θ  where ( ).φ  is the link function (assumed log link here).  The        

fitted   values are then given by: ( )2 GLMˆ iσ = ( ){ }GLMˆexp i′z θ  , i=1,…,n 

7. Perform local linear regression on the set of squared MMRR residuals, obtaining 

( )2 LLRˆ iσ = (llr)' 2(MMRR)
bi σ

h e  where (llr)'
bi σ

h is the ith row of ( )LLR
bσ

H , i=1,…,n. 

8. Obtain the VMRR estimates of variance which are written as: 

( )2 (VMRR) 2 (LLR) 2 (GLM)ˆ ˆ ˆ =   + 1σ σσ λ σ λ σ−i i i , i=1,…,n, and where   [0,1]σλ ∈  is the 

variance model mixing parameter.  

9. Return to step 2 with ( ) ( )( )2 VMRR 2 VMRR
1

ˆ ˆ ˆ, , nV diag σ σ= . 



 14

10. Cycle through steps 2 - 9 until convergence of the means model parameters.   

 The flexibility that DMRR affords to the researcher is due to the mixing parameters µλ and 

σλ .  By varying the values of µλ  and σλ , DMRR can successfully accommodate various states of 

the user’s proposed parametric model ranging from both models (mean and variance) being 

correctly specified, to processes in which only one model is correctly specified, to situations where 

neither model has been correctly specified.  Herein lies the contribution of DMRR.  Current dual 

modeling techniques have been developed under the assumption that the researcher either has 

complete confidence (parametric approach) in the forms of one or both of the specified models or 

the researcher has no confidence (nonparametric approach) in an explicit specification of one or 

both of the models.  This research contends that there are many cases in which the researcher’s state 

of knowledge is not binary.  Rather, the researcher is confident that a specified parametric function 

may be appropriate across part of the data but realizes that there may be certain characteristics in the 

data which cannot be captured parametrically. DMRR seeks to utilize as much of the researcher’s 

parametric knowledge as possible while still allowing for specific deviations in the data to be 

captured.  In the next section we detail the asymptotic characteristics of DMRR and then in Section 

5 we present data-driven methods for bandwidth and mixing parameter selection. 

 

4.  Dual Model Asymptotic Results 

 

Asymptotic results for MRR were presented in MBS. They derived the theoretically 

optimal mixing parameter, λ , and gave the rates of convergence for MRR1 and MRR2 estimators. 

Their results are extended here to the dual model.  In particular, using the methods of MBS it is 

straightforward to show that the theoretically optimal mixing parameter for the means model (using 

MRR2), denoted by *
µλ , is 
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*
µλ = 2

µ

(EWLS)
µ

r̂

ŷψ,r̂ −
 

and the theoretically optimal mixing parameter for the variance model (using MRR1), denoted by 

*
σλ , is 

λσ
* = 22(LLR)2(GLM)

2(GLM)2(LLR)2(GLM)

σσ

σσσ

ˆˆ

ψˆ,ˆˆ

−

−−
 

where ψ is an nx1 vector representing the true mean or variance function at each of the n 

observations, 2 (GLM)σ̂ is the nx1 vector of parametric fits to the squared MMRR residuals and 

2 (LLR)σ̂ is the nx1 vector of LLR fits to the squared MMRR residuals.  For notational convenience, if 

h1 and h2 are any two functions of x i
' ,  we define the inner product as  

    ( ) ( )-1
1 2 1 2=1
,  = n

i ii
n ∑h h h x h x ,       

and the norm as  

    ( )0.52
1 1 1 1 1 1= , , with  = , .h h h h h h  

Estimation of *
µλ  and *

σλ  is discussed in the next section. 

Under the six assumptions (denoted A1 – A6) and four requirements (denoted by R1-R4) 

given in MBS and Starnes (1999), the following two theorems give asymptotic convergence rates 

for the means and variance estimates after one iteration of the DMRR algorithm.  The proofs for 

these theorems as well as definitions of all terms (to include the nonparametric convergence rate), 

are given in the Appendix. 

 

 

Theorem 1:  If A1 – A6 hold, then  
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ψŷr̂ˆ −+ (EWLS)
µ

*
µλ =

( ) ( )

( ) ( ).5

lim 0

lim 0
→∞

−

→∞

 ≠


=

γ δ

δ

P n nn

P nn

O if

O n if
 

Theorem 2:  If A1 – A6 and R1 –R4 hold, then 

ψˆˆˆˆ −−+ 2(GLM)*
σ

2(LLR)*
σ )λ1(λ σσ =

( ) ( )

( ) ( ).5

lim 0

lim 0
→∞

−

→∞

 ≠


=

γ δ

δ

P n nn

P nn

O if

O n if
.   

Thus, DMRR obtains the best asymptotic convergence rate available regardless of whether the 

user’s parametric model is correct or incorrect.  Clearly the convergence rate for the entire one 

iteration DMRR estimate will converge as quickly as the slowest of the two component estimates.  

Thus, DMRR, with the choice of mixing parameters given above, has the same asymptotic 

properties as MRR in the single means model case.  Terms and proofs for these results are given in 

the appendix. 

 

5.  Data-Driven Bandwidth and Mixing Parameter Selection 

 

 For DMRR to be implemented in practice, it is important that there exist data-driven 

methods for bandwidth and mixing parameter selection.  In this section, we outline a cross-

validation method for bandwidth selection as well as explicit methods for choosing the mixing 

parameters for MMRR and VMRR.  We begin with a discussion regarding bandwidth selection. 

5.1 Bandwidth Selection 

The smoothness of the nonparametric estimate is controlled by the bandwidth, b.  When the 

bandwidth is too small, the nonparametric fit is too variable and when the bandwidth is too large, 

the nonparametric estimate suffers from bias.  Hence, the choice of bandwidth involves a bias-

variance trade-off.  The literature is rich with bandwidth selection methods [see for example 

Hardle (1990), Hardle et al. (2004)].  Since the choice of bandwidth involves a bias-variance trade-
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off, bandwidth selection is generally done so as to minimize an optimality criteria such as mean 

squared error (MSE).  MBS introduce a penalized cross-validation technique, PRESS**, for 

choosing an appropriate bandwidth.  The approach selects the bandwidth as the value of b which 

minimizes PRESS**, where PRESS** is defined as 

  
( ) ( )(LLR)

PRESSPRESS** = 
1 max b

max

SSE SSEn trace n k
SSE

−
− +  − +  H

 

where maxSSE denotes the largest error sum of squares over all possible bandwidths, bSSE is the 

error sum of squares associated with a particular bandwidth, b; k is the number of regressors, and 

the prediction error sum of squares, PRESS, is given by: 

    ( )2
,ˆPRESS = 

n

i i i
i=1

y y −−∑  

where ,ˆi iy −  denotes the estimated mean response obtained by leaving out the ith observation when 

estimating at location ix .  MBS show that PRESS** performs well by guarding against very small 

and very large bandwidths.   

Recall for DMRR that there are two sets of data, one for the means model and one for the 

variance model.  Applying the expression for PRESS** to the model robust fit to the mean, the 

nonparametric fit is performed on the residuals from the EWLS parametric fit.  Consequently, the 

‘y’s’ for the PRESS statistic are the EWLS residuals which are formed in Step 3 of the DMRR 

algorithm.  The (LLR)H  matrix in the PRESS** expression would then be (LLR)
bµ

H from equation (3.4).  

Applying the expression for PRESS** to the robust fit to the variance, the nonparametric fit is 

performed on the squared MMRR residuals.  Consequently, the ‘y’s’ for the PRESS statistic are  the 

squared MMRR residuals which are formed in Step 5 of the DMRR algorithm.  The (LLR)H  matrix 
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in PRESS** would then be (LLR)
bσ

H  from equation (3.5).  The PRESS** statistic is used for all 

bandwidth selection of nonparametric fitting in the simulation study presented in the next section. 

5.2 Mixing Parameter Selection 

Sample estimators of *
µλ , the means model mixing parameter, and *

σλ , the variance model 

mixing parameter are given by  

2

EWLS

µ

µ

r̂

ŷy,r̂ )( >−<
,  

and 

2 (GLM) 2 (LLR) 2 (GLM) 2

22 (GLM) 2 (LLR)

ˆ ˆ ˆ,

ˆ ˆ

< − − >

−

σ σ σ e

σ σ
,  

respectively.  In the next section, we compare DMRR to some natural parametric and nonparametric 

competitors for estimating the dual model via a simulation study.  

 

6.  Simulation Study 

 

 In this section we present graphical and numerical comparisons of DMRR to traditional 

parametric and nonparametric dual modeling techniques in four scenarios:  1.  The functional forms 

of both the underlying mean and variance models are correctly specified;  2.  The functional form of 

the underlying variance function is correctly specified but the form of the mean is misspecified;  3.  

The functional form of the mean is correctly specified but the form of the variance model is 

misspecified;  4.  Functional forms of both the mean and variance are misspecified. Comparisons 

among the methods will be based on the Monte Carlo simulated integrated mean squared error 

values for the mean and variance estimates (SIMSE(M) and SIMSE(V) respectively) given by 



 19

   
( )( )

1000500 2

11

ˆ
( ) ,  with   = 

500 1000

j j
ji

E y yasem
SIMSE M asem ==

−
=

∑∑
 

and 

   
( )

1000500 22 2

11

ˆ
( ) ,  with   = 

500 1000

j j
ji

asev
SIMSE V asev

σ σ
==

−
=

∑∑
 

 

where ‘asem’ and ‘asev’ denote the average squared error for the mean and variance fits, 

respectively, across 1000 locations (uniformly spaced) in the x-space for each of 500 simulated data 

sets.  Also regarding notation, ( )jE y  and 2
jσ  are the true underlying mean and variance values at 

location xj, respectively.  The estimates of the mean and variance at location xj, are ˆ jy  and 2ˆ jσ , 

respectively.  The five competing methods are as follows: 1. DMRR, 2. the parametric approach of 

Aitken (denoted ‘PAR’), 3. a nonparametric approach using LLR for estimating the mean and the 

pseudo-residual approach of Muller and Stadtmuller  (1987 and 1993) (denoted ‘NPAR1’), 4. a 

nonparametric approach using LLR for both the mean and variance estimates (denoted ‘NPAR2’), 

and 5. the bias-corrected approach of Ruppert et al. (1997) (denoted as ‘NPAR3’).  Note that in all 

three nonparametric cases (NPAR1, NPAR2, and NPAR3) the mean estimates are identical as the 

techniques only differ in their estimation of the variance functions. 

6.1 Simulation Scenarios 1 and 2 

In this sub-section, we consider simulating data to explore comparisons among the five 

methods for scenarios 1 and 2 from above: 1. Both the mean and variance models are correctly 

specified by the user and 2.  The form of the variance model is correctly specified but the mean is 

not.  Data for this subsection as well as subsection 6.2 will be generated based on the following 

underlying dual model: 
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   ( ) ( ) ( )2 1/ 2 x  - 1
y  = 2 x  - 5 + 5 x  + sin  + g z ,

2.25
i

i i i i i

π
γ ε

 
 
 

      (6.1)             

   ( )2  = g zi iσ  { }2= exp 3.125 1.25 0.125i ix x− + .   (6.2) 

We assume that x = z (the same variable influencing the mean also influences the variance).  We 

also assume independent errors with the ith error, ~ N(0,1)iε .  Regarding notationγ  denotes the 

misspecification parameter.  Note that as the value of γ  increases from 0 the adequacy of a 

specified quadratic model for the mean deteriorates.  For the parametric approach, we assume that 

the user specifies a quadratic means model and an exponential variance model with both a linear 

and quadratic effect.  This specification is also assumed for the parametric portion of the DMRR 

approach. The true underlying mean function for γ = 5.0 is plotted in Figure 2(a).  Three sample 

sizes are considered (n = 20, 40, and 60) and five values of γ , ranging from the mean model 

correctly specified when γ =0, to varying degrees of misspecification, γ =2.5, 5.0, 7.5, and 10.0).   

In all examples, the x-values are taken at evenly spaced locations from 0 to 10, and are scaled to be 

between 0 and 1 when choosing the bandwidths and mixing parameters. 

 The simulated integrated mean squared error values for the estimated mean and variance 

functions, SIMSE(M) and SIMSE(V), respectively, are provided in Table 1 with minimum values 

across the five methods indicated in bold.  Numbers in the tops of each cell denote SIMSE(M) 

whereas numbers in the bottom of each cell denote SIMSE(V).  Note that when 0γ = both the mean 

and variance functions are correctly specified in the parametric (PAR) approach.  As a result, PAR 

performs uniformly best (mean and variance estimates) while 0γ =  across all sample sizes.  As γ  

increases in magnitude from 0, one would expect that the performance of PAR would deteriorate for 

both the mean and variance estimates.  The mean estimate for PAR deteriorates because the 

quadratic parametric model becomes less adequate and the variance estimate of PAR deteriorates 

since the data used for the variance model involves the residuals from the estimated mean. The 
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impact of means model misspecification can be seen for a particular data set (n=40) in Figures 2(b) 

and 2(c) for 5.0γ = .  Note that the parametric estimate of the mean in 2(b) misses the bumps 

caused by the addition of the sine function.  DMRR and the LLR estimates of the mean, on the 

other hand, capture the true structure of the underlying function.  Although the variance model is 

correctly specified by PAR, when the residuals are contaminated with lack-of-fit, the specified 

variance function is not only trying to fit the variance structure but also the lack-of-fit from the 

mean.  The failure of PAR for 5.0γ =  is visualized in Figure 2(c) as the PAR estimate of variance 

is seen to be extremely biased. Comparing Figure 2(d) to 2(c) we see that the DMRR and NPAR 

methods do reasonably well at capturing the structure of the underlying variance function for this 

particular data set. Note for γ >5.0, the PAR approach to dual modeling is uniformly worse than all 

other methods.  The only exception is the difference-based variance estimate, NPAR1 when γ =5.0 

and n=20.  The difference-based variance estimate (NPAR1) performs better with larger sample 

sizes but performs least effectively among the nonparametric methods considered here. 

 As the parametric mean becomes more misspecified, γ >0, the proposed dual model robust 

methodology (DMRR) performs uniformly more superior than any of its competitors.  Among the 

purely nonparametric estimates, the local linear smooth of the mean and local linear smooth of the 

squared mean residuals (NPAR2), performs uniformly best.  The bias adjusted method of Ruppert 

et. al. (1997)  (NPAR3) becomes more competitive with NPAR2 as the sample size increases.  Note 

that the most pronounced difference between NPAR2 and DMRR occurs when there is small 

( 2.5γ = ) to moderate ( 5.0γ = ) degrees of misspecification in the mean.  When 2.5γ = , the 

DMRR SIMSE(M) is 14.9% smaller than NPAR2 for n=20, 13.9% smaller than NPAR2 for n=40, 

and 11.6% smaller than NPAR2 for n=60.  Regarding the variance estimate, the DMRR SIMSE(V) 

is 4.8%, 9.4%, and 16% smaller than NPAR2 for n = 20, 40, and 60, respectively.  The improved 

performance of the DMRR variance estimate for larger sample sizes is likely do to the improved 
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performance of the parametric variance fit with larger sample sizes (note the performance of the 

PAR variance estimate across all values of γ  as n increases).   

 The improvement that DMRR offers over the purely parametric approach increases as γ  

increases in magnitude.  The improvement that DMRR offers over its purely nonparametric 

competitors is greatest with small and moderate degrees of mean misspecification.  The greater the 

misspecification in the mean, the closer the DMRR estimate is to the NPAR2 estimate.  Recall that 

the philosophy which drives the DMRR approach is that of explaining as much of the underlying 

structure as possible parametrically and then augmenting with a nonparametric smooth to capture 

‘anomalies’.  Consequently, as the user-supplied parametric function becomes less and less 

adequate, the DMRR fit becomes almost entirely comprised of the nonparametric estimate, thus 

reducing the degree of difference between DMRR and NPAR2.  In the next subsection, we consider 

misspecification in both the mean and variance. 

6.2 Simulation Scenarios 3  and 4 

In this sub-section, we consider simulating data to explore comparisons among the five 

methods for scenarios 3 and 4 above: 3.  The functional form of the mean is correctly specified but 

the form of the variance model is misspecified.  4.  Functional forms of both the mean and variance 

are misspecified.  Data will be generated based upon the same functional forms as given in (6.1) and 

(6.2). We again assume that x = z (the same variable influencing the mean also influences the 

variance).  We also assume independent errors with the ith error, ~ N(0,1)iε . For the parametric 

approach, we still assume a quadratic means model is specified but now we assume that an 

exponential variance model is specified with only a linear main effect.  Thus, the linear predictor in 

the variance model is misspecfied.  This specification is also assumed for the parametric portion of 

the DMRR approach. Similar to the previous section, the mean becomes more misspecified as γ  

increases from zero.  Three sample sizes are considered (n = 20, 40, and 60) and five degrees of 
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means misspecification are studied (γ = 0 (correct specification), 2.5, 5.0, 7.5, and 10.0).  Simulated 

integrated mean squared error values for the mean and variance estimates, SIMSE(M) and 

SIMSE(V), are provided in Table 2. 

 When there is no misspecification in the mean, PAR offers the best estimate of the mean in 

terms of SIMSE(M).  Although PAR is superior to the other methods for estimating the mean when 

0γ = , its SIMSE(M) values are larger than they were when the variance model was correctly 

specified (Table 1).  As was observed in Table 1, the PAR estimates of both the mean and variance 

deteriorate as γ  increases in magnitude from zero.  The SIMSE(V) values for PAR are largely 

greater in Table 1 (correctly specified variance) than in Table 2 (incorrectly specified variance).  

Although this may appear counter-intuitive, it is important to remember that for γ > 0, the specified 

variance model is not only attempting to fit the variance structure but also the lack-of-fit from the 

poorly estimated mean.  Consequently, the functional form of the variance plus lack-of-fit may be 

better described by a linear predictor involving x than a linear predictor involving x2.     

 As was observed in Table 1, the DMRR estimate of the mean is superior to all other 

methods in terms of SIMSE(M) when γ > 0.  Comparisons of the estimated variance models are 

slightly more complicated for the scenarios considered in Table 2.  For nearly all situations in Table 

2, there is negligible difference between the local linear smooth (NPAR2) and DMRR in terms of 

SIMSE(V).  The reason for this relates again to the philosophy of the DMRR estimate.  The DMRR 

estimate’s performance is based upon the user supplying a parametric form that explains a 

reasonable amount of structure in the underlying functional form.  For the results in Table 2, the 

user has supplied a linear predictor that is linear in x when the actual variance function involves a 

linear predictor that is quadratic in x.  As a result, the parametric specification is poor.  When the 

user-supplied parametric form is poor, the DMRR and local linear smooth (NPAR2) will tend to 

perform equally as well.  This is evident in Table 2 as NPAR2 and DMRR vary only by an amount 
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that could be ascribed to simulation error.  It is important to note, however, that in practice one 

never knows the extent to which a parametric model explains the underlying structural form.  In 

situations where the specified parametric function is highly inadequate, the DMRR approach, while 

computationally more intensive, is generally no worse than the local linear smooth.  In situations in 

which a parametric model can explain most of the underlying structure except for certain anomalies, 

the DMRR approach will tend to perform better than both the parametric approach and the local 

linear smooth.   

 

7.  Summary and Conclusions 

 

 We have developed a model robust approach to dual modeling.  Dual modeling involves the 

simultaneous modeling of both the mean and variance.  Most methods of variance estimation 

(except for the difference-based approach of Muller and Stadtmuller  [1987 and 1993] when there is 

no replication available require residuals from the mean fit in order to fit the variance function.  

Consequently, it is imperative for the user to fit the mean well in order to increase the likelihood of 

accurately estimating the variance.  Traditionally nonparametric approaches for estimating the mean 

and variance simultaneously have been considered when the user cannot adequately describe the 

forms of the mean and variance functions with a parametric model.  The proposed dual model 

robust methodology (DMRR) offers a ‘hybrid’ approach to dual modeling by combining a 

parametric fit with a portion of a local polynomial smooth via appropriately chosen mixing 

parameters.  Computational expressions are provided for the choice of mixing parameters.  The 

DMRR approach offers particular advantages over its nonparametric counterparts when the user can 

describe much of the underlying functional forms via parametric models.  The DMRR approach is 

more beneficial than its parametric counterpart when there are certain anomalies in the data which 
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cannot be captured parametrically.  In practice one never knows the true degree of model 

misspecification and as a result, we recommend the DMRR approach.  In this manuscript we have 

established asymptotic superiority of DMRR over local polynomial regression and in a small 

simulation study, we have demonstrated the advantages that DMRR can offer over its parametric 

and nonparametric counterparts in small sample settings.  
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n=20 
γ  PAR NPAR1 NPAR2 NPAR3 DMRR 

0 0.765 
28.376 

2.788 
304.812 

2.788 
33.161 

2.788 
41.829 

1.563 
29.362 

2.5 3.908 
37.538 

2.974 
369.447 

2.974 
33.689 

2.974 
42.283 

2.529 
32.039 

5.0 14.726 
305.975 

3.397 
542.214 

3.397 
36.181 

3.397 
51.674 

3.069 
33.667 

7.5 26.450 
928.407 

3.648 
680.427 

3.648 
35.704 

3.648 
54.310 

3.446 
35.272 

10 45.813 
2615.06 

3.791 
959.97 

3.791 
34.430 

3.791 
53.776 

3.600 
33.951 

n=40 
γ  

     

0 0.371 
14.469 

1.520 
69.455 

1.520 
23.648 

1.520 
30.205 

0.916 
20.356 

2.5 3.344 
25.701 

1.712 
74.092 

1.712 
23.600 

1.712 
30.186 

1.474 
21.371 

5.0 13.915 
243.133 

1.925 
86.288 

1.925 
24.624 

1.925 
33.210 

1.783 
21.924 

7.5 25.362 
763.418 

2.101 
104.870 

2.101 
24.833 

2.101 
36.103 

1.986 
21.871 

10 44.694 
2330.40 

2.235 
111.148 

2.235 
25.733 

2.235 
35.600 

2.184 
22.802 

n=60 
γ  

     

0 0.239 
10.882 

1.127 
60.433 

1.127 
19.930 

1.127 
27.913 

0.676 
16.304 

2.5 3.153 
21.760 

1.227 
57.530 

1.227 
19.142 

1.227 
25.873 

1.085 
16.068 

5.0 13.661 
229.518 

1.359 
50.830 

1.359 
19.357 

1.359 
25.810 

1.284 
16.944 

7.5 25.088 
735.464 

1.440 
63.580 

1.440 
20.844 

1.440 
27.655 

1.392 
17.391 

10 44.427 
2269.2 

1.612 
69.041 

1.612 
21.110 

1.612 
28.701 

1.570 
18.040 

 
Table 1: Mean model misspecified, variance model correctly specified.  Simulated integrated mean 
squared error values for the five methods with SIMSE(M) on top, SIMSE(V) on bottom.  Best 
values over the five methods in bold for each γ . 
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n=20 
γ  PAR NPAR1 NPAR2 NPAR3 DMRR 

0 1.029 
30.177 

2.653 
280.804 

2.653 
33.801 

2.653 
43.407 

1.480 
31.553 

2.5 3.945 
38.392 

2.977 
345.403 

2.977 
34.347 

2.977 
45.639 

2.525 
33.538 

5.0 14.512 
233.914 

3.319 
518.584 

3.319 
33.795 

3.319 
49.730 

3.060 
33.711 

7.5 25.991 
705.696 

3.621 
616.949 

3.621 
35.713 

3.621 
54.640 

3.361 
33.843 

10 45.192 
2116.77 

3.573 
874.973 

3.573 
35.667 

3.573 
56.956 

3.360 
34.287 

n=40 
γ  

     

0 0.538 
27.706 

1.539 
73.868 

1.539 
22.830 

1.539 
29.867 

0.857 
21.466 

2.5 3.302 
37.145 

1.717 
81.052 

1.717 
24.245 

1.717 
31.830 

1.500 
23.999 

5.0 13.857 
213.890 

1.944 
84.787 

1.944 
24.771 

1.944 
31.676 

1.833 
24.821 

7.5 25.242 
673.375 

2.107 
92.200 

2.107 
25.330 

2.107 
34.605 

1.993 
25.371 

10 44.404 
2110.34 

2.217 
117.615 

2.217 
25.508 

2.217 
36.259 

2.138 
26.173 

n=60 
γ  

     

0 0.406 
27.036 

1.170 
63.793 

1.170 
19.691 

1.170 
27.631 

0.726 
18.570 

2.5 3.093 
36.291 

1.205 
66.988 

1.205 
20.556 

1.205 
29.875 

1.029 
19.225 

5.0 13.633 
211.858 

1.424 
60.667 

1.424 
21.322 

1.424 
30.355 

1.336 
20.882 

7.5 24.972 
673.468 

1.445 
63.473 

1.445 
20.050 

1.445 
27.498 

1.386 
19.980 

10 44.166 
2037.90 

1.607 
64.682 

1.607 
20.964 

1.607 
28.451 

1.572 
20.912 

 
Table 2:  Mean and Variance Models Misspecified.  Simulated integrated mean squared error values 
for the five methods with SIMSE(M) on top, SIMSE(V) on bottom.  Best values over the five 
methods in bold for each γ  
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[Robinson, Birch, and Starnes] 
Figure 1:  1(a) Lidar Data, 1(b) MMRR Fit,  

1(c) VMRR, Parametric, and Nonparametric Fits to Squared MMRR Residuals 
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[Robinson, Birch, and Starnes] 
Figure 2 :   Example on p. 16   

2(a) True Mean Function, 2(b) MMRR, EWLS, and LLR Fits,  
2(c) True Variance Function and GLM Estimate of Variance, 

2(d) VMRR, Nonparametric Residual Based, and Difference Based Variance Estimates 
 

 

 

 

Appendix:  Proofs of Theorems 1 and 2 

 
We prove the asymptotic results in this appendix.  We will begin with some conventions.  The term 

“asymptotic” means that the number of observations increases without bound, and the manifestation 
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MMRR (Solid), EWLS (Dash), LLR Fit (Dotted)

True Variance Function (Solid), GLM Estimated Variance (Dotted) VMRR (Solid), Diff (Long Dash), Res (Short Dash)
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of these observations in the X space increases uniformly in C, the predictor space.  Note that the 

predictor space is one dimensional.  Consequently, here, and in requirements R1, R3  and R4, and 

assumption A1, we are concerned only with the xi (and zi) terms of xi (and zi) on p. 8.  Thus, we 

have a fixed effects  structure, as → ∞n , over a uniform design.  To that end, we need to introduce 

some convenient and useful notation.  We will use L   to mean lim
∞→n

(called the “limfinity” symbol).  

For the purpose of this section we will consider the first iteration only of any part of the DMRR 

procedure being performed at each n.  This is because an iterative procedure does not involve any 

additional observations and the machination for our results is the increasing uniform density of 

observations, not the refinement that takes place in an iterative process with the same n 

observations.  If the iterative process produces a better estimate after a number of iterations, then 

the overall estimate can do no worse than that of the first iteration. 

 

We shall momentarily label either nx1 vector of parametric fits ( (EWLS) 2(GLM)ˆ ˆory σ ) by pψ̂ , and 

either nx1 vector of  nonparametric fits ( 2(LLR)
µ̂ ˆorr σ ) by npψ̂ , where ψ, the unknown true 

regression function vector, is defined on p. 15.  We will denote by δn, the distance between ψ, and 

the parametric family of continuous (on C) regression models under consideration evaluated at the n 

observations, where  

    δn = inf{||ψ – ψp(β)||:  β ∈ Rk+1}.   (A.1) 

If the infimum is attained at a particular β, we will designate this as β∗ and write  

    δn = || ψ – ψp(β∗)||.  

Similarly, we set γn as a distance measure for the nonparametric estimate,   

  γn
2 = E(|| npψ̂ - ψ||2) or E(|| npψ̂ - (ψ -  ψp(β∗)||2) 

according to whether we’re using MRR1 or MRR2 respectively.  Note that the distance is taken 

using the optimal parametric fit.  Even though the nonparametric estimate is dependent upon the 

convergence of the parametric estimate to its optimal form (given above), the nonparametric rate of 

convergence is still based upon the sample size.  Thus, even if the nonparametric estimate has a 

different target function for each sample of size n, it will reach that goal with a degree of accuracy 

based on the number of observations.  We subsequently show that for the DMRR estimates, the rate 

of convergence for the parametric estimates will exceed that of the nonparametric estimates.  As in 
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MBS, the above notation is appropriate for the MRR type estimates involved here.  In Starnes 

(1999) it is seen that the nonparametric rate of convergence is dependent on the bandwidth. 

 

Since the nonparametric estimates meet the criteria given in MBS, Burman and Chaudhuri (1992), 

and Starnes (1999) for theorems 1 and 2, and the first iteration means estimate uses the usual 

parametric linear regression, we want to show that the parametric rate of convergence holds for the 

GLM estimate in the variance estimate.  The parametric rate of convergence is important because in 

the variance estimate we utilize a more general type of parametric modeling (nonlinear function).  

In the results that follow, we will show that the generalized parametric estimate will not require any 

specific form for the mean response as a function of the independent variable (as in GLM), except 

that it is a continuous function of both x and β.  

 

For the moment we will once again label the generalized parametric estimate by pψ̂ , with ψp 

defined as some function of the parameter vector β as in subsequent equation A.1.  Notice that we 

do not require ψp to be linear in β, so that we are now operating with the generalized non-linear 

model, which contains the family of generalized linear models.  Additionally, we will make the 

following four requirements for the parametric estimate. 

 

R1.  The observed responses are independent (but not necessarily identically distributed), and are 

functions of xi, values that are fixed uniformly on C = (a,b) with 0 < a < b < ∞. 

 

R2.  ( )xiV  (the variance at each xi ) is bounded both from above and below. 
 
 
R3.  For every n > p+1, the matrix D is of full rank (p+1) where D is a matrix of partial derivatives 

with elements  

    
j

i
ji β

d
∂

∂
=

)(p β,xψ
, , where i = 1,…,n, and j = 0,…,p.   

Note, that this implies that there is no β j  (for  j = 0, …, p) such that 

    0
)(p ≡

∂

∂

jβ
β,xψ

, for x in C. 



 34

R4. For  j = 0, …, p,  
jβ∂

∂ )(p β,xψ
 is continuous and bounded for both x and β on C = (a,b) and Rp+1 

respectively. 

 

Define 

 SGn = ∑ =
−






















∂

∂

∂

∂n

i
ii

iwn
1

T
pp1 )()(

β
β

β
β ;xψ;xψ

  

and 

 SG = L  SGn, 

where wi is a weighting constant related to V(xi).  We are interested in whether or not this matrix 

exists and is defined and finite (i.e. both det(SG
-1) and det(SG) are nonzero and finite).  The 

following lemma gives the convergence rate for almost any type of non-linear parametric regression 

estimate formed by using an IRLS iteration scheme [see Carroll and Ruppert (1988)]. Its proof may 

be found in Starnes (1999). 

 
Lemma 1  Assuming requirements R1-R4 above SGn has a finite limit asymptotically; that is, SG

-1 is 

defined and finite, where 

    SG
-1 = (L  SGn)-1.  

 

Carroll and Ruppert (1988) and Bishop, Feinberg and Holland (1975) provide the machinery for 

Lemma 2.    

 
Lemma 2  Assuming requirements R1-R4 above, the parametric regression  

estimate, pψ̂ , obtained through IRLS (with a n.5 consistent starting estimate for β), has the property 

    )( 12

pp
−=− nOPψψ̂ . 

Now that we have established a rate of convergence for a global family of parametric estimates 

(which include the GLM parametric estimates used in DMRR), we must recall that the parametric 

estimate in question (from step 6, p. 13) was utilized in an MRR1 framework.  We have 

complementary portions of the mixing parameter used in both nonparametric and parametric parts.  

In this case, it is not only necessary to show that the parametric convergence rate is appropriate, but 
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also that the parametric estimate, 2 (GLM)σ̂ , meets the standards of A1 of MBS, the first of the 

aforementioned 6 assumptions.  This assumption is used for the parametric part of any of the MRR 

estimates and is given as follows. 

 
A1. There exists a function W1 of two variables which is defined and bounded on  

C × C, where C is the predictor space, and  

   )()(-)(-)( 1
1 1pp

−
=

=∑ nOεxWn P
n

i ii
-1 .,*,.ψ,.ˆψ̂ ββ   (A.2) 

Burman and Chaudhuri (1992) state that this condition is trivially satisfied (the norm is equal to 

zero) if ψ is linear in β and continuous in the second argument.  Notice that in steps two and six of 

the DMRR algorithm (p. 13) both parametric estimates are continuous in all components x and z 

respectively.  Also notice that for the means model, the parametric estimate is linear in β, but that 

the variance parametric estimate is a function of a linear predictor of β.   

According to Starnes (1999) (pp. 96 – 98), the GLM variance parametric estimate, (GLM)2σ̂ , 

satisfies assumption A1 if we assume that the variance is at least bounded.  In this instance, the 

squared residuals resulting from the means model (step 4, p. 13), have an approximate Gamma 

distribution, which has a finite variance (δς2, where δ, ς ∈ R+ ) according to Wackerly, Scheaffer 

and Mendenhall (2002).  The essence of the verification is that we utilize a Taylor Series expansion 

on the function of the linear predictor to form an appropriate weight function, W1 to satisfy A.2.  

The result is the same functional rate of convergence in either parametric case (traditional or GLM).  

So in both the means and variance estimates, the parametric component satisfies assumption A1. 

Finally, then, the overall convergence rates for the one iteration mean and variance estimates 

necessary for DMRR follow the MRR results given in MBS.  So that ψŷr̂ˆ −+ (EWLS)
µ

*
µλ  … 

    = OP(γn), if L δn ≠ 0, and 

    = OP(n-. 5), if L δn = 0; 

and ψˆˆˆˆ −−+ 2(GLM)*
σ

2(LLR)*
σ )λ1(λ σσ … 

    = OP(γn), if L δn ≠ 0, and  

    = OP(n-. 5), if L δn = 0.   

The proofs of these results may be found in MBS.  //. 
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