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Profile monitoring is a relatively new technique in quality control best used where the process
data follows a profile (or curve) at each time period. Little work has been done on the
monitoring on nonlinear profiles. Previous work has assumed that the measurements within
a profile are uncorrelated. To relax this restriction we propose the use of nonlinear mixed
models to monitor the nonlinear profiles in order to account for the correlation structure.
We evaluate the effectiveness of fitting separate nonlinear regression models to each profile in
Phase I control chart applications for data with uncorrelated errors and no random effects.
For data with random effects, we compare the effectiveness of charts based on a separate
nonlinear regression approach versus those based on a nonlinear mixed model approach. Our
proposed approach uses the separate nonlinear regression model fits to obtain a nonlinear
mixed model fit. The nonlinear mixed model approach results in charts with good abilities
to detect changes in Phase I data and has a simple to calculate control limit.
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Introduction

It is crucial in Phase I of a control chart scheme to determine which of the data points are

similar to each other and which ones are outlying in some way. This ensures that the Phase

II application will be adequate for real time monitoring. Due to advances in technology, it

is becoming much more common to obtain profiles (a series of data points forming a curve)

at each time period that represents the quality state of a process. As such, recent research

has focused on how to determine which profiles are outlying in Phase I applications. A good

introduction to the concept of profile monitoring, and examples of its application can be

found in Woodall et al. (2004).

The majority of work in profile monitoring has focused on situations where the profiles are

linear. For example, see the work of Kang and Albin (2000), Kim, Mahmoud, and Woodall

(2003), Mahmoud and Woodall (2004), Wang and Tsung (2005), and Jensen, Birch, and

Woodall (2006b). These methods often fit separate linear regression models and monitor the

coefficients of the fitted regression model to determine outlying profiles. Thus the profiles

have been reduced to a smaller set of values that simplifies the monitoring scheme. However,

it is often the case that the profiles are better described by a nonlinear function than by a

linear function. Nonetheless, the majority of existing profile monitoring research deals with

linear profiles. Williams, Woodall, and Birch (2003) gave a broad treatment of nonlinear

profile monitoring where separate nonlinear (NL) regression models are fit to each profile.

Williams et al. (2006a) gave an application of NL profile monitoring to dose-response data.

The previous work on nonlinear profile monitoring has assumed that the measurements

within a profile are independent of each other. This is often an unrealistic assumption in

practice for many types of data. Therefore, we propose the use of a nonlinear mixed (NLM)

model to monitor the profiles in order to account for the correlation structure within profiles.
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After discussing the formulations of the NL and NLM models, we show via simulation situ-

ations where the NLM model approach is superior to the NL approach in detecting changes

in the Phase I dataset. We propose a method that supplements the approach of Williams,

Woodall, and Birch (2003) with a NLM model to improve the control chart procedure. We

demonstrate our proposed method by applying it to the particle board data of Walker and

Wright (2002).

NL Model Formulation

We assume that we have m profiles of data, each of which has ni measurements where i

refers to the ith profile. We can then fit a separate NL model to each profile. Let yij refer

to the jth measurement for the ith profile. The model for each of the separate nonlinear

regressions is given by

yij = f(xij,θi) + ǫij for i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, (1)

where f(.) is some nonlinear function, xij is a regressor variable for the measurement, θi

is a px1 vector of parameters for each profile, and ǫij is the error associated with the jth

measurement of the ith profile. The errors are often assumed to be independent and normally

distributed, that is ǫij ∼ N(0, σ2
i ), implying that the measurements within a profile are

uncorrelated. We will assume throughout that the profiles have the same variability in the

error term, thus σ2
i = σ2 for i = 1, 2, . . . ,m.

If the responses for the ith profile are stacked to form a vector, yi, then we have the

alternative form of the model from (1) given by

yi = f(xi,θi) + ǫi for i = 1, 2, . . . ,m, (2)
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where xi is a vector of the values of the predictor variable and ǫi is a vector of errors that

has a multivariate normal distribution, ǫi ∼ MN(0,Ri) with Ri being a n by n positive

definite variance-covariance matrix. If the errors are correlated, Ri is often assumed to be a

simple form such as compound symmetry (CS) or autoregressive (AR) in order to reduce the

number of covariance parameters that need to be estimated. For more details on the various

types of correlated error structures that can be assumed for Ri, see Littell et al. (1996) or

Schabenberger and Pierce (2002). If the measurements within a profile are uncorrelated then

ǫi ∼ MN(0, σ2
i I).

There is a wide variety of nonlinear functions that have been used for applications. A

book covering nonlinear models (Gallant, 1987; Ratkowsky, 1990; Schabenberger and Pierce,

2002; Seber and Wild, 2003) will discuss many of the different types of functions that have

been utilized. For example, consider the 4-parameter logistic model, which has been used

frequently for dose-response studies. This model is given by

yij = Ai +
Di − Ai

1 +
(

xij

Ci

)Bi
+ ǫij for i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, (3)

where Ai is the upper asymptote, Di is the lower asymptote, Ci is the point where the curve

reaches halfway between Ai and Di, and Bi is a parameter representing the rate of increase

or decrease from Di to Ai. The larger the value of Bi, the steeper will be the slope of the

curve. See Figure 1 for an example of the 4-parameter logistic curve where Ai = 1, Bi = 8,

Ci = .6, and Di = 0.

When the parameters in (2) are all fixed, then the only variability in the responses will be

due to the ǫi term. To illustrate the impact of the variability of the errors on profiles, consider

Figure 2, which shows randomly generated 4-parameter logistic curves with uncorrelated

errors with different values of σ2 for all generated profiles. Here m = 30, n = 10, and the

values of Ai, Bi, Ci, and Di are the same as those in Figure 1. We see that the larger the
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Figure 1: Example of a 4-parameter logistic curve where Ai = 1, Bi = 8, Ci = .6, and
Di = 0.

variability of the errors the greater the differences between the profiles.

NL Model Estimation

For the NL model in (1) and (2), the maximum likelihood estimator (MLE) of θi, θ̂i, is

that estimator that will minimize the residual sum of squares given by

SS(θi) =

ni∑

j=1

[yij − f(xij,θi)]
2 for i = 1, 2, . . . ,m

= [yi − f(xi,θi)]
′ [yi − f(xi,θi)] for i = 1, 2, . . . ,m. (4)

Because of the nonlinearity introduced in (4) by f(.) there is not a closed form expression

for the estimator that will minimize SS(θi). There are two major iterative algorithms used

for obtaining the parameter estimates for this NL model.
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Figure 2: Illustration of the difference in the generated profiles due to differences in the
variability of the errors. For these profiles, m = 30, n = 10, and the values of Ai, Bi, Ci,
and Di are the same as those in Figure 1.

The first, the Gauss-Newton (GN) algorithm, replaces f(xi,θi) in (4) with a Taylor series

approximation about θi so that the minimization can then proceed in an iterative fashion.

We denote θ̂i

0

as the vector of initial starting values for the iterative algorithm, and denoting

the matrix of derivatives of the NL function evaluated at the initial starting values as

F̂i =
∂ f(xi,θi)

∂θi

|
θi=θ̂i

0 . (5)

The GN algorithm computes

θ̂i

1

= θ̂i

0

+
(
F̂i

′

F̂i

−1
)

F̂i

′
[
yi − f(xi, θ̂i

0

)
]
. (6)
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After each iteration θ̂i

0

is replaced by θ̂i

1

until θ̂i

0

≈ θ̂i

1

. Thus the algorithm stops when the

change in estimated parameters from one iterate to the next is sufficiently small. In this case

the algorithm has converged and θ̂i = θ̂i

1

. Adjustments to this basic algorithm are often

implemented in practice to avoid numerical issues and ensure convergence (Schabenberger

and Pierce, 2002, Chapter 5; Seber and Wild, 2003, Chapter 14).

The second, the Newton-Raphson (NR) algorithm, replaces the entire function in (4)

by a Taylor series approximation and similar to the GN method, iteratively solves for the

parameter estimates. For simple NL models, there will often not be much difference in the

estimates obtained by either of the two algorithms. Thus the default method in SASr, the

GN algorithm, will be our choice for what follows.

With the normality assumption in the NL model, we can state the distributional properties

of the vector of obtained parameter estimators, θ̂i. In contrast to the standard linear model,

normality of the parameter estimator will only hold asymptotically, that is,

θ̂i

A
∼ MN

[
θi, σ

2

i (F
′

iFi)
−1

]
for i = 1, 2, . . . ,m. (7)

The result in (7) holds whether or no the error are uncorrelated (Seber and Wild, 2003,

Chapter 12.2).

NLM Model Formulation

In the NLM model we extend the NL model in (2) to allow for any random effects. In

vector form it is given by

yi = f(xi,θ,bi) + ǫi for i = 1, 2, . . . ,m, (8)

where θ is a vector of fixed effects common to all profiles, bi is the r by 1 vector of random

effects with bi ∼ MN(0,D). D is assumed to be a diagonal matrix with the diagonal
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elements referred to as the variance components. A good introduction and review of the

literature on the NLM model can be found in Davidian and Giltinan (2003) or books by

Pinheiro and Bates (2000), Schabenberger and Pierce (2002), and Demidenko (2004).

Demidenko (2004, Chapter 6.1) proposed a restriction of (8) by forcing the random effects

to enter the model linearly so that we can rewrite (8) as

yi = f(xi,θ) + Zibi + ǫi for i = 1, 2, . . . ,m. (9)

where Zi is a ni by r matrix of values corresponding to the random effects. While this may

simplify the computational effort required to obtain estimates, we will not pursue it here

because it is less flexible.

The model in (8) allows for two levels of correlation for the measurements within a profile.

The first results from the random effects which cause all the measurements within a profile to

be correlated to each other. The second results from the within-profile variance-covariance

matrix of the errors, Ri. A NLM model that uses neither of the two levels of correlation is

simply the NL model in (2) with uncorrelated errors because Zi = 0 and ǫi ∼ MN(0, σ2
i I).

See Davidian and Giltinan (2003, pp. 395-400) for more discussion of the within profile

correlation and its interpretation in the NLM model.

NLM Model Estimation

As noted by Schabenberger and Pierce (2002), given the random effects in the NLM

model, one can write the marginal density of yi as

g(yi) =

∫
g(yi|bi) g(bi)dbi. (10)

where g(.) is the assumed probability density function. The evaluation of this integral is

required for inference but the distribution g(yi) is not known even when the errors and
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random effects have a multivariate normal distribution. As a result, numerical methods are

needed. The most common methods are the linearization and the integral approximation

methods.

Earlier work on estimation of NLM models focused on the linearization approach which is

an approximation of the nonlinear function in (8) by some linear function. This replacement

results in a multivariate normal density function for which an estimator can be obtained.

On the other hand, the integral approximation approach has increased in popularity in re-

cent years due to advances in computing power and existence of Monte Carlo (MC) based

methods for directly evaluating the integral in (10). The nlmixed procedure of SASr uses

the integral approximation approach with adaptive MC procedures that are more computa-

tionally efficient than standard MC procedures. Thus our analysis of the NLM model will

be based on the integral approximation method.

Diagnostics in NL and NLM models

Davidian and Giltinan (1995, p. 328) noted that diagnostic methods for NL and NLM

models are underdeveloped and nearly non-existent but would be very useful. While there

are computational difficulties in dealing with the nonlinearity of the models, they recom-

mended more research in the area of diagnostics and noted that new research will increase

the utilization of NL and NLM models. We review here some of the methods that have

appeared but believe the area to still be underdeveloped.

Pinheiro and Bates (2000) proposed to check assumptions of the NLM model by using

the classical regression diagnostic plots such as the normal probability plot of errors and

a scatter plot of residuals versus the fitted values. They do not give justification for why

such plots would work other than that they have been used for classical regression problems.
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Demidenko (2004, Chapter 9.5) discussed some methods to determine the influence of unusual

data points on NL regression models. Lee and Xu (2004) considered diagnostic methods for

the NLM model based on the case deletion and local influence approach. However, they had

to use MC methods in order to compute the diagnostics and this would seem to limit their

applicability.

Our approach, which combines the separate NL regressions with a NLM model, differs

from these previous approaches appearing in the literature. Prior to explaining the approach,

we first wish to compare approaches based on the NL and NLM models, which we do in the

next section.

T 2 Statistic for NL and NLM Models

For most control chart applications, where the profiles occur at regular time periods, the

data collection is well controlled as if from a designed experiment. Thus the number of

measurements per profile will often be the same and at the same locations along the profile.

Once the profiles are obtained, they can be fit with separate NL models or with a NLM

model. The NLM model has the advantage of pooling information from the profiles together

and allows us to model the random effects. When utilizing the NL approach, that of fitting

separate NL regression models to each profile, we have reduced the profiles to a series of

time-ordered vectors, θ̂i. For the NLM model we have reduced the profiles to the estimated

fixed effects vector, θ̂, and the vectors containing the estimated random deviations from the

fixed effects vector, b̂i.

Once we have obtained the estimates we use the T 2 statistic to determine outlying profiles.

The T 2 statistic is widely used in multivariate quality control and a comprehensive review of

its properties and alternative forms can be found in Mason and Young (2002). A T 2 statistic
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based on the sample mean vector and sample variance-covariance matrix is widely used but is

not very effective in detecting anything more than a single moderately sized outlying profile

(Vargas, 2003). Its distribution is proportional to a beta distribution (Mason and Young,

2002). The alternative is to base the T 2 statistic on the sample mean and the variance-

covariance matrix of the successive differences between vectors (Holmes and Mergen, 1993).

Sullivan and Woodall (1996) showed that using successive differences is effective in detecting

sustained step changes in the process that occur in Phase I data. While the distribution

of the T 2 statistic based on successive difference does not have a simple closed form, its

asymptotic distribution is χ2
p. A discussion of the various approximate distributions and the

preferred χ2
p approximation for large samples is given in Williams et al. (2006b). The sample

sizes that we use here are large enough to justify use of the χ2
p approximation to obtain the

control limit.

For the NL approach we use the θ̂i vectors to calculate the T 2 statistics. The T 2 statistic

for the separate NL regression models based on sample mean and variance-covariance is

denoted by T 2
1,i,NL and the T 2 statistic based on successive differences by T 2

2,i,NL. They are

given by

T 2

1,i,NL = (θ̂i − θi)
′S−1

1,NL(θ̂i − θi)

= (θ̂i − θi)
′

[∑m

i=1
(θ̂i − θi)(θ̂i − θi)

′

m − 1

]
−1

(θ̂i − θi) for i = 1, 2, . . . ,m, (11)

where

θi =

∑m

i=1
θ̂i

m
, (12)

and by

T 2

2,i,NL = (θ̂i − θi)
′S−1

2,NL(θ̂i − θi)

= (θ̂i − θi)
′

[∑m−1

i=1
(θ̂i+1 − θ̂i)(θ̂i+1 − θ̂i)

′

m − 1

]
−1

(θ̂i − θi) for i = 1, 2, . . . ,m. (13)
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Because the fixed effects vector, θ̂, is the same for all profiles in the NLM model, the

T 2 statistic will only depend on the predicted random effects. They will be denoted by

T 2
1,i,NLMM and T 2

2,i,NLMM and are respectively,

T 2

1,i,NLMM = (b̂i − b)′

[∑m

i=1
(b̂i − b)′(b̂i − b)

m − 1

]
−1

(b̂i − b) for i = 1, 2, . . . ,m, (14)

and

T 2

2,i,NLMM = (b̂i − b)′

[∑m−1

i=1
(b̂i+1 − b̂i)

′(b̂i+1 − b̂i)

2(m − 1)

]
−1

(b̂i − b) for i = 1, 2, . . . ,m, (15)

where

b =

∑m

i=1
b̂i

m
. (16)

Simulation Study Setup

We now explain the general procedure for the simulation studies used to compare the

NL and NLM methods. To generate the multivariate normal errors and random effects

we first generate univariate normal data and use the Cholesky decomposition to transform

the generated univariate data to multivariate data. The multivariate data is then added

appropriately to the nonlinear function to get the generated values of the response variable.

The data are fit with separate NL regression models or a NLM model using the nlin and

nlmixed procedures of SASr with the correct model specification.

The control limit is established using the appropriate percentiles of the beta or χ2 dis-

tributions so that the probability of signal for the in-control data is .05, the nominal value.

The actual probability of signal is estimated by the proportion of datasets where there was

a signal. That is, a signal occurs when at least one of the T 2 statistics exceeds the control

limit.
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When obtaining the estimates in a NL or NLM model, non-convergence of the iterative

algorithm can occur. In some cases the frequency of non-convergence can be problematic.

We found that in general, the more variability there is in the simulated data, either due to

increased variability in the errors or larger variance components of the random effects distri-

bution, the more frequent the non-convergence. To reduce the frequency of non-convergence,

it is often recommended to use good starting values for the fixed parameters and compo-

nents of the variance-covariance matrix. These starting values can be obtained via graphical

methods (Schabenberger and Pierce, 2002). In some situations where the non-convergence

was more likely to be present, we used in our simulations the known parameter values used

to generate the data as starting values of the iterative algorithm as was done by Hartford

and Davidian (2000). This reduces the frequency of non-convergence just as would occur if

a knowledgeable researcher were to spend a sufficient amount of time exploring, cleaning,

and appropriately analyzing a single dataset.

We note that the regression equivariance property discussed in Rousseuw and Leroy (1987)

does not hold for the NL and NLM models. The unfortunate consequence is the difficulty

in obtaining broad conclusions from a smaller set of simulation studies because the obtained

results will depend on the type of nonlinear function, its particular form, and the set values

of the parameters. In order to investigate via simulation the differences obtained by using

the NL versus the NLM approach, we picked a nonlinear function related to a real data

situation to ensure that our results will hold when analyzing the corresponding dataset. We

believe that the conclusions obtained here will hold for other types of functions but it would

be very difficult to make a general conclusion to all functions.

We considered the dose-response data described in Williams et al. (2006a) which can

be modeled by the 4-parameter logistic curve mentioned in (3). The fitted data curves are
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Figure 3: Fitted curves for dose response data of Williams et al. (2006a).

shown in Figure 3. Note that the values for the dose were not equally spaced but the log of

the values of the dose were equally spaced. So the curves in Figure 3 show equally spaced

data because the horizontal axis is the log of the dose. In considering these dose-response

data curves, exploratory data analysis shows that after eliminating several of the profiles due

to lack of model fit, the median values of the 4 parameters are very close to Ai = .9, Bi = 2,

Ci = .05, and Di = .4.

We use this function and its parameter values as typical for this particular application.

We also considered the four parameter logistic curve with two other sets of parameter values

representing functions more extreme than the median function which we denote the maxi-

mum curve and the minimum curve. The maximum curve has parameter values of Ai = 1,

Bi = 4, Ci = .05, and Di = 0 and has a steeper rate of change than the median curve with

the asymptotes further apart from each other. The minimum curve has parameter values of
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Ai = .75, Bi = 1, Ci = .05, and Di = .5 and has a more gradual rate of change with the

asymptotes closer together.

Uncorrelated Data with no Random Effects

We first investigated the probability of signal of the method of fitting separate NL re-

gression models as proposed by Williams, Woodall, and Birch (2003). We considered the

situation where there are no random effects and the errors are independent. For randomly

generated in-control data, we want to determine if the control limit based on beta or χ2
p dis-

tributions is appropriate. Here the data are balanced and equally spaced. 10, 000 datasets

were generated for each run of the simulation studies.

Figure 4 shows the probability of signal for in-control data generated from both the

4-parameter logistic median and maximum curves. The horizontal axis is the number of

observations per profile, n, and the vertical axis is the probability of signal for various

values of m and σ2 for both T 2
1,i,NL and T 2

2,i,NL. We see that while T 2
1,i,NL and T 2

2,i,NL

have similar performance, the probability of signal can be much larger than the desired .05

level, particularly as σ2 increases. When there is little variability in the errors the nominal

probability of signal will be maintained.

The probability of a signal decreases as n increases. Thus, if there are more observations

per profile, the parameter estimators are more stable and the control limit based on the beta

or χ2
p distributions is appropriate. This is to be expected because the NL model parameter

estimators are only asymptotically (in n) normal. Normality is required for the T 2 statistics

in (11) and (13) to have a beta or χ2
p distribution, respectively. Thus when using a smaller

number of observations per profile it is not appropriate to use a control limit that requires

the assumption of normality.
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Figure 4: Probability of signal for two T 2 statistics for simulated in-control data following
the median and maximum curve for various values of m, n, and σ2.

On the other hand, the probability of signal increases when m increases suggesting that

when there are more profiles present, it is more likely that at least one of them will be

declared an outlying profile than when there are not many profiles present.

Figure 5 shows the probability of signal for in-control data generated from the minimum

curve. The probability of signal was calculated only for a single, smaller value of σ2 = .001,

because larger amounts of variability of the errors made the probability of signal virtually

1, and the programming code had difficulty handling larger amounts of variability without

convergence problems.
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Figure 5: Probability of signal of two T 2 statistic for simulated in-control data following the
minimum curve for various values of m and n, with σ2 = .001.

In conclusion, for this particular 4-parameter logistic model, the control limit based on

beta or χ2
p distributions will not be appropriate for any of the three types considered unless

n is sufficiently large and σ2 is sufficiently small. Results not shown here for other values

of Ai, Bi, Ci, and Di concur with our conclusions here even though it should be noted that

because regression equivariance does not hold, there are some situations where the control

limit will be sufficiently accurate. Otherwise, the control limit will have to be simulated for

practical applications.

It would be possible to consider other data scenarios such as balanced, unequally spaced

data or unbalanced data but we do not pursue it here in light of the results of Jensen, Birch,

and Woodall (2006b) for linear profiles. If the control limit is inadequate for balanced, equally
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spaced data then they will be even more inadequate for data that are unequally spaced, or

unbalanced. In addition, because the control limit is inadequate for complete datasets, then

they will be even more inadequate for profile data that have missing observations within the

profile.

Uncorrelated Data with 1 Random Effect

Because of the inherent difficulty in modeling multiple random effects as mentioned previ-

ously, we next considered data where a single random effect is present. We wish to compare

the NL approach with a NLM approach when analyzing the 4-parameter logistic model. To

determine which parameter to set at random we analyzed the dose-response data of Williams

et al. (2006a) shown earlier in Figure 3. After initial data cleaning and test of lack of fit,

there remained 32 profiles for analysis. We calculated the parameter estimates for separate

NL regression models for each profile. The mean and variance of the parameter estimates

for the 32 profiles are shown in Table 1.

Table 1: Mean and variance of the parameter estimates obtained from separate NL models
for the dose-response data of Williams et al. (2006a).

Parameter Mean Variance

Ai 0.8984 0.0002

Bi 1.9353 0.2917

Ci 0.0543 0.0003

Di 0.3919 0.0022

It is clear that Bi has the largest amount of variability among the profiles and thus it is

the best candidate to be modeled as a random effect in a NLM model. We rewrite (3) as

yij = Ai +
Di − Ai

1 +
(

xij

Ci

)B+bi
+ ǫij for i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, (17)

17



where bi is the random effect that represents how much the slope parameter of the ith profile

differs from the overall slope parameter, B.

To determine the values of σ2
B that we will use when generating the simulated data, we

chose to use values similar in magnitude to the estimated variance of the random effect from

Table 1. The values for σ2
B that we considered were all between .1 and .5 We generated

in-control data that followed the median 4-parameter logistic curve with a random effect in

Bi and uncorrelated errors. In one study, we set σ2 = .001 and σ2
B = .5 and performed

1, 000 simulation runs. Table 2 shows the probability of signal when using the approximate

control limit for m = 30 and various values of n. A smaller number of runs was performed

here when modeling the random effect than when there was no random effect because of the

larger computational burden required to obtain estimates for the NLM approach.

Table 2: Probability of signal for the four T 2 statistics for simulated data with a random
effect in Bi, n ranging from 10 to 500, m = 30, σ2 = .001, and σ2

B = .5.

n T 2
1,i,LS T 2

2,i,LS T 2
1,i,MIX T 2

2,i,MIX Non-convergence Non-convergence

in NL in NLM

10 0.740 0.606 0.070 0.043 0.0216 0.1240

20 0.692 0.586 0.040 0.031 0.0072 0.1245

40 0.681 0.557 0.037 0.033 0.0055 0.1361

50 0.674 0.587 0.038 0.035 0.0051 0.1613

60 0.708 0.585 0.030 0.023 0.0045 0.1670

80 0.685 0.592 0.030 0.017 0.0044 0.1763

100 0.667 0.566 0.036 0.031 0.0039 0.1808

200 0.679 0.581 0.033 0.028 0.0032 0.1737

500 0.676 0.570 0.043 0.028 0.0027 0.1750

The NL approach is the wrong approach here because it ignores the random effect, thus

we see that the probability of signal for the NL method is quite large and that the NLM
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method does a much better job of keeping the probability of signal close to the nominal .05

level. Notice that the probability of signal for the NL approach is higher in Table 2 than

it was in Figure 4. Additional variability in the nonlinear data (due to the random effect)

causes the performance of the NL approach to deteriorate. In contrast, the NLM approach

does not worsen because it is correctly accounting for the increased variability. As a result

the approximate control limit based on the asymptotic normality assumption will not be

very accurate for the NL approach when random effects are present. As n increases, the NL

method does not improve. This is because the asymptotic results of the NL estimators does

not necessarily hold in the presence of random effects. One concern is that the frequency

of non-convergence in the NLM method is higher and appears to increase slightly as n

increases, nonetheless, the NLM approach is still the preferred approach. The probability of

signal calculations for the T 2
1,i,MIX and T 2

2,i,MIX statistics shown in Table 2 involve only the

simulated runs where there was no non-convergence.

Now consider how the variability of the random effect impacts the results shown in Table

2. We repeated the same simulation study used to generate Table 2 with different values of

σ2
B used to generate the data. Figure 6 shows the probability of signal for the T 2 statistics

for different values of σ2
B where m = 30 and σ2 = .001. Figure 7 shows the proportion of

non-convergence of the NLM approach as σ2
B varies where m = 30 and σ2 = .001.

From Figure 6 we see that as the variability of the random effect gets smaller, the difference

between the NL and NLM methods nearly disappears. This is because as σ2
B decreases, the

profiles are more similar to each other and the more similar they are to profiles with no

random effects. In addition, in Figure 7 we see that the proportion of non-convergence

decreases as σ2
B decreases. There are slight increases in the proportion of non-convergence as

n increases, likely due to the increased computational difficulty for increased sample sizes.
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Figure 6: Probability of signal for T 2
1,i,LS, T 2

2,i,LS, T 2
1,i,MIX , and T 2

2,i,MIX for in-control data
for the median curve where σ2

B varies from .1 to .5. In this case m = 30 and σ2 = .001.

We do not show specific results where σ2 changes but note that its impact on data with

random effects is the same as the impact on uncorrelated data with no random effects as

was discussed earlier. That is, increasing σ2 will increase the probability of signal for the

NL approach with in-control data. We chose a smaller value of σ2 for the results in this

section, resulting in a smaller probability of signal for the NL method, in order to illustrate

the impact of changing σ2
B.

To illustrate the out-of-control performance of the NL and NLM methods we did a power

study by introducing a change in the generated data and calculating the probability of

signal under the change. With the 4-parameter logistic curve, a shift in the profiles can be

introduced in any of the 4 parameters. We considered a step shift in Bi which represents

a change in the steepness of the profiles. Figure 8 shows the out-of-control performance for

the median curve with T 2
2,i,NL and T 2

2,i,NLMM when there is an increase in Bi after the fifth

profile. Here m = 30, σ2 = .001, n varies from 10 to 60, and the value of Bi increases

by values ranging from 0 (the in-control case) to 5. We do not show the results for T 2
1,i,NL
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Figure 7: Proportion of non-convergence in NLM approach for the median curve when
m = 30, σ2 = .001 and n and σ2

B vary.

nor T 2
1,i,NLMM because they have little ability in detecting step changes as demonstrated

by Sullivan and Woodall (1996). To obtain these results in Figure 8, the control limit was

simulated in order to ensure that the probability of signal for in-control data is equal to .05.

1, 000 datasets were simulated to generate the power curves.

We see that the NLM approach clearly has a much higher probability of detecting the

change than the NL approach. The difference for the two approaches is larger when σ2
B is

larger because the difference between the power curves is larger for the bottom row of Figure

8 than for the top row. This is because the NLM approach is taking into account the larger

variability in the random effect that the NL approach ignores. As n increases, the closer

the two approaches will be because they are both fitting the nonlinear curves equally well.

When there is a smaller number of observations per profile, the NL approach will not fit

the curves as well whereas the NLM approach pools information together across profiles to
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Figure 8: Probability of signal for T 2
2,i,NL and T 2

2,i,NLMM for out-of-control data for the median
curve where σ2

B and n vary. Here m = 30 and σ2 = .001 and the step change in Bi occurred
after the fifth profile.

achieve a better fit. As an added bonus and not shown here, we found that the frequency

of non-convergence decreased for the NLM as the size of the shift increased. Similar results

were obtained for the maximum and minimum curves, thus they are not presented here.

We do note that there is a dependence of the results on the location of the shift. Figure

9 shows the probability of signal for out-of-control data from the median curve for m = 30,

n = 20 and when the step change occurred at different locations. We see that the NLM

approach is always at least equivalent to the NL approach and often times far superior. The

closer the shift is to the beginning of the data collection procedure the better the NLM

approach will be.
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Figure 9: Probability of signal for T 2
2,i,NL and T 2

2,i,NLMM for out-of-control data from median
curve for various locations of the step change where there is an increase in Bi Here m = 30,
n = 20, σ2

B = .1 and σ2 = .001.

To explain the dependence on the locations of the shift, recall that because of regression

equivariance, the appropriateness of the approximate control limit depends on the values of

the parameters used in the function. For example, notice from Figure 4 that the probability

of signal for the NL approach is different for the maximum curve than for the median curve.

For each of the different locations where the step change occurs, there is a different mix

of curves with different parameter values, thus the difference between the NL and NLM

approaches is not the same across all values of the step change.

This lack of regression equivariance makes it difficult to generalize the conclusions re-

garding the increases to what occurs when there are decreases in Bi. To illustrate, compare

Figure 9 with Figure 10 which shows the probability of signal for decreases in Bi. An issue
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to be concerned with when studying decreases in Bi is that when Bi value is close to zero,

the greater the chance that there will be instability in the numerical algorithms used to

obtain the results. Thus the generated curves used in Figure 10 are the same as the median

curve used to generate Figure 9, except that the in-control value of Bi = 7 instead of 2. We

see again that the probability of signal depends on the location of the shift. In Figure 10,

the difference between the NL and NLM approaches is largest for later shifts and negligible

for earlier shifts. Note that the results for step=5 in Figure 9 are similar to the results for

step=25 in Figure 10. This is because in the first case when step=5, the in-control curves

are equivalent to the out-of-control curves from the second case and vice versa.

Figure 10: Probability of signal for T 2
2,i,NL and T 2

2,i,NLMM for out-of-control data for various
locations of the step change where there is a decrease in Bi Here m = 30, n = 20, σ2

B = .1
and σ2 = .001.
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Correlated Data With Random Effects

Now consider the situation where the profiles have correlated errors with random effects

but still are balanced and equally spaced. In our review of the literature on the NLM model,

we found that the Ri matrix is often assumed to be a diagonal or identity matrix, a fact

also noted by Davidian and Giltinan (2003). This is because the variability between profiles

represented by the random effects has a bigger impact on the variability in the response than

does the correlation within profiles. This was noted for the linear mixed model by Verbeke

and Molenbergs (2000) and for the NLM model by Davidian and Giltinan (1995, 2003). As a

result software such as SASr and S-Plus do not allow specification of a correlation structure

of the errors in conjunction with integral approximation methods although they do allow for

correlation with linearization methods (Schabenberger and Pierce, 2002, p. 538).

In addition, it was noted by Schabenberger and Pierce (2002) that modeling the corre-

lation concurrently with a random effect makes little difference in the results obtained but

can increase the likelihood of convergence problems. To model the correlation in the NLM

approach would be difficult in practice. It would require one to program the numerical al-

gorithms to obtain the estimates because they are not readily available in SASr or S-Plus

when using the integral approximation approach. Thus, although theoretically possible, it

is not easy to obtain a NLM model fit with correlated errors. We present here empirical

evidence showing that it may be sufficient to simply model the random effects and not model

the correlation in our application.

For the median 4-parameter logistic curve we generated in-control data with uncorrelated

and correlated errors where there was a single random effect in Bi. In Table 3 we show the

probability of signal for the T 2 statistics based on the NL and NLM approaches for in-control

data following the median curve with m = 30, n = 20, σ2
B = 0.5 and σ2 = .001 and where
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different amounts of correlation were introduced in the errors. There is a large difference in

the probability of signal for the T 2 statistics based on the NL approach when compared to

those based on the NLM approach, but there is little difference in the T 2 statistics as the

amount of correlation in the errors increases. Thus the modeling of the random effect has a

large impact on the appropriateness of the control limit.

Table 3: T 2 statistics for the NL and NLM approaches for data with uncorrelated and
correlated errors. The generated data follow the median curve with m = 30, n = 20,
σ2

B = 0.5 and σ2 = .001.

ρ T 2

1,i,NL T 2

2,i,NL T 2

1,i,NLMM T 2

2,i,NLMM

0.0 0.6784 0.5680 0.0502 0.0378

0.1 0.6766 0.5642 0.0470 0.0366

0.2 0.6810 0.5660 0.0428 0.0336

0.3 0.6836 0.5706 0.0404 0.0295

0.4 0.6786 0.5638 0.0360 0.0288

0.5 0.6742 0.5602 0.0310 0.0277

0.6 0.6716 0.5594 0.0292 0.0263

0.7 0.6542 0.5498 0.0275 0.0258

0.8 0.6358 0.5286 0.0302 0.0279

0.9 0.6226 0.5090 0.0433 0.0332

When considering the out-of-control case as done previously, we show in Figure 11 the

probability of signal for T 2
2,i,NL and T 2

2,i,NLMM when a step change was introduced in the

profiles when the data have uncorrelated or correlated errors. We see that the NLM approach

gives us a higher probability of signal than the NL approach across the levels of correlation.

To summarize the results here, we see that the NLM approach that ignores the correlation

in the errors is superior to the NL approach even when the errors are correlated. We note

that this does not mean that we could not do even better with a NLM approach that does

model the correlation in the errors. While we do not believe the NLM approach could be

improved drastically by explicitly modeling the correlated errors, it remains to be seen how
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Figure 11: Probability of signal for T 2
2,i,NL and T 2

2,i,NLMM for out-of-control data following
the median curve where a step change occurred after the fifth profile. Here m = 30, σ2

B = 0.5
and σ2 = .001.

much improvement could be gained.

Our conclusions here agree with the results of Staudhammer et al. (2005) who modeled

profiles in lumber manufacturing using mixed models. They modeled the autocorrelated

errors with time series models and concluded that for SPC applications, ignoring the auto-

correlation does not make much difference. This is true even though their profiles are rather

complicated and there is an obvious autocorrelation in the data. The number of observations

that they have per profile is much larger than the sample sizes considered here (n > 2000).

27



Proposed Method

Our proposed method of Phase I analysis when considering nonlinear profiles uses both

the NL and NLM to determine outlying profiles. It builds on the approach of Williams et

al. (2006a) who proposed the following steps:

1. If there is replication of the points taken at each location along the profile, then the

homogeneity of variance can be checked. Profiles that do not have a homogeneous

variance across the locations within the profile are eliminated from the dataset after

inspecting the appropriate T 2 statistic, which is obtained by using a variance regression

model.

2. Determine the appropriateness of the choice of the nonlinear function through a lack-

of-fit (LOF) test. This test can be performed whether or not there is replication of the

points although when there is no replication, the lack-of-fit test is model based.

3. Fit separate NL regression models to each of the profiles to obtain individual profile

parameter estimates. Use the estimates for the basis of the T 2 statistics as in (13).

This step corresponds to the NL approach studied earlier.

Our approach uses the first two steps of the approach outlined above and replaces step

3 with two new steps that utilize the NLM model approach. Thus the last two steps of our

proposed approach are given by:

3. Fit separate NL regression models to each of the profiles to obtain individual profile

parameter estimates. Compute the sample variances across the m profiles for each

of the parameters. Upon inspecting the sample variances for large values relative to
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the other values, determine which parameters, if any, should be modeled with random

effects, trying to keep the number of random effects small. In many cases, there will

be one or two of the nonlinear parameters that have much larger variability than the

others; these should be prime candidates for inclusion of random effects.

4. Fit the NLM model using the determination of random effects from the previous step

to obtain the predicted random effects. Use the predicted random effects as the basis

for the T 2 statistics to determine outlying profiles as in (15). The control limit can be

obtained by using the corresponding percentiles of the appropriate distribution. This

step corresponds to the NLM approach studied earlier and compared with the NL

approach.

This proposed approach will be illustrated in the example that follows.

Example

To illustrate the differences between the proposed approach and the approach of Williams

et al. (2006a) we consider the particle board data presented in Walker and Wright (2002)

and studied by Williams, Woodall, and Birch (2003). In the initial analysis, there were 24

boards, each of which had 314 measurements along the profile. The raw data profiles are

shown in Figure 12.

Williams, Woodall, and Birch (2003) fit a nonlinear function requiring six parameters to

the raw data profiles. These parameters consisted of a lower asymptote, the center where

the lower asymptote is achieved and four other parameters determining the flatness of the

center of the curve and the rate at which the curve increases. They allowed the curve to be

asymmetric about the center. However, we note that the profile are very nearly symmetric
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Figure 12: Raw data profiles for the particle board data of Walker and Wright (2002).

so we reduce the number of parameters required by constraining the curve to be symmetric.

Thus our model will only require 4 parameters to describe the function. The model is given

by

yij =






Ei (xij − Hi)
Fi + Gi if xij > Hi

Ei (−xij + Hi)
Fi + Gi if xij ≤ Hi





for i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, (18)

where Ei and Fi represent the rate of increase and flatness in the curve, Gi is the lower

asymptote, and Hi is the center point where the curve attains the lower asymptote.

Because there is no replication of the points for the locations along the profile, we do not

perform the first step of our proposed procedure, the test of homogeneity of variance within

the profile.

The second step is to perform a LOF test. Because there are no replicates of the points

at the different locations we cannot perform a classical lack of fit test discussed in many
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textbooks on regression. An alternative is to divide the points along the profile into different

groups and treat the points within a group as “pseudo-replicates”. This idea is discussed in

Su and Yang (2006) and its references. We do not pursue this idea here because the particle

board data does not lend itself to natural groups within the profile.

In lieu of a LOF test, we test for a “lack of consistency” among the m profiles as discussed

in Williams (2005). This test compares the fits within the profiles to see if any profiles have

substantially worse fit than the other profiles. For each profile we calculate the sums of

squares of the residual obtained by subtracting from the response its predicted value. This

is given by

SSEi =
m∑

i=1

(yij − ŷij)
2 for i = 1, 2, . . . ,m, (19)

where ŷij is the predicted value obtained from the nonlinear regression fit. The the statistic

Wi =
SSEi∑m

i=1
SSEi

. (20)

will have an approximate beta distribution with ni and (
∑m

i=1
ni) − ni degrees of freedom

respectively. Using (19) for the particle board data we obtain the SSEi and Wi values and

plot the Wi values in Figure 13. Also shown is the critical value (the dotted line) from the

beta distribution.

We do not believe that the beta distribution is correct in this case because of the large

number of profiles that would be declared as lacking fit. Further research is needed to

determine the appropriate limit to use for this lack of consistency procedure where there are

no replicates. Instead we inspect the chart for values of Wi that stand out from the others.

Profiles 3 and 21 both have Wi values that are larger than the values for the other profiles

and would be candidates for exclusion. We choose to keep them in the dataset in order to

illustrate the control chart testing procedure.
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Figure 13: Lack of consistency test values for the particle board data of Walker and Wright
(2002).

The third step is to fit the separate NL models and obtain the parameter estimates

to determine which random effects to include. The mean and standard deviation of the

parameter estimates of the separate NL fits for the particle board data is shown in Table 4.

We see that the variability of Ei is much larger than any other parameter. Thus it is the

most likely candidate for having a random effect. If a second random effect is included in

the NLM model, the Gi would be included with a random effect.

Table 4: Mean and standard deviation of the parameter estimates for the particle board
data of Walker and Wright (2002).

Parameter Mean Standard Deviation
Ei 9317.5 20965
Fi 4.7173 1.0273
Gi 44.428 1.7381
Hi 0.3104 0.0030
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Figure 14: T 2 control charts for the NLM approach for the particle board data of Walker
and Wright (2002). The top panel corresponds to the chart with a single random effect and
the bottom panel corresponds to the chart with two random effects.

The final step is to fit the NLM model and obtain the T 2 statistics from (14) and (15).

The resulting charts for the T 2 statistics based on the NLM model is shown in Figure 14.

The top panel corresponds to the charts when we only modeled a single random effect, Ei

and the bottom panel corresponds to the charts when we modeled two random effects, Ei

and Gi. Compare Figure 14 with Figure 15 which shows the charts obtained for the separate

NL regression models from (11) and (13) and which corresponds to the method of Williams

et al. (2006a). We see that the use of T 2
2,i,NL produces two signals on the control chart

whereas the T 2
2,i,NLMM chart doesn’t produce any signals. Thus we conclude that we can use

all 24 profiles to obtain the parameter estimates on which the Phase II control charts will

be based.

Conclusions

For nonlinear profiles, we proposed to fit them with a NLM model to account for random
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Figure 15: T 2 control charts for the NL approach for the particle board data of Walker and
Wright (2002).

effects and correlated errors. We found that an approach that uses the separate NL regression

models to determine needed random effects works well in setting up the analysis of the profiles

with a NLM model. This proposed method uses an easy to calculate control limit and thus

does not require extensive simulation to obtain the correct control limit as the approach of

Williams et al. (2006a). We also found that we can ignore the correlation of the errors and

concentrate our effort in modeling the random effects. Modeling the random effects allows

us to use a Phase I control limit that does not need to be obtained via simulation as would

be needed if we only obtained the estimates from separate NL regression models.

There are a number of questions not answered here. For example, we limited ourselves to

the balanced, equally spaced data scenario but did not consider unbalanced data or data with

missing observations. Because of the superiority of the NLM approach for balanced, equally

spaced data, we believe that it will retain or even increase its advantage for unbalanced or

missing data scenarios. Nor have we considered a T 2 statistic based on high breakdown

estimators that are excellent at detecting multiple outliers (Vargas, 2003; Jensen, Birch, and

Woodall, 2006a).

Profile monitoring is a very fruitful area of research. We believe that there is a tremendous

reservoir of untapped data applications where this methodology can be utilized. Profile
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monitoring is a tool of the future to match the technology of today that will realize more

widespread acceptance as it becomes more readily accessible. We encourage further research

and applications of profile monitoring.
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