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Summary. We study a model-based clustering procedure that aims to identify geographic regions 

with distinctive relationships among ecological and environmental variables.  We use a finite 

mixture model with a distinct linear regression model for each mixture component, relating a 

measure of environmental quality to multiple regressors.  Component-specific values of 

regression coefficients are allowed, for a common set of regressors. We implement Bayesian 

inference jointly for the true partition and component regression parameters. We assume a 

known, prior classification of measurement locations into “clustering units,” where measurement 

locations belong to the same mixture component if they belong to the same clustering unit. A 

Metropolis algorithm, derived from a well-known Gibbs sampler, is used to sample the posterior 

distribution.  Our approach to the label switching problem relies on constraints on cluster 

membership, selected based on statistics and graphical displays that do not depend upon cluster 

indexing. Our approach is applied to data representing streams and rivers in the state of Ohio, 

equating clustering units to river basins.  The results appear to be interpretable given geographic 

features of possible ecological significance.  
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1. Introduction 
 

Recognition that the ecological effect of a pollutant or other environmental stressor may 

depend on regional influences such as climate and soils has stimulated efforts to delineate 

geographic regions useful for purposes of environmental analysis and decision making.  Uses of 

such regions include stratification of sampling studies, and identification of appropriate ranges of 

inputs for mechanistic models.   

Standard systems of “ecoregions” have been developed by governmental agencies.  

Ecoregions used in the U.S. are based on combinations of soil types, landform, land-use, climate 

and biological communities.  McMahon et al. (2001) provide an account that integrates 

perspectives from multiple U.S. agencies.  Standardized systems of ecoregions are based 

primarily on expert, subjective integration of diverse information, with statistical procedures 

recognized as playing an important supporting role.  The ecoregion systems may facilitate inter-

disciplinary decisions, accounting for social and economic as well as environmental 

considerations.  While the systems provide default regions for many analyses, it is recognized 

that they may not be ideal for analysis of some specific environmental problems.   

As an alternative (or complement) to the standard systems of ecoregions, based on expert 

judgement, statistical classification methods may be used to identify regions relating quantitative 

measures of environmental quality to measures of environmental stress (Lamon and Stowe, 

2004; Robertson and Saad, 2003). Results from such approaches may corroborate the usefulness 

of standard ecoregions, or may suggest alternative divisions relevant to specific measured 

variables. A statistical perspective is that we may have a better chance of success with a simple 



 3

type of model such as linear regression, if such a model is assumed to hold within restricted 

geographic regions rather than globally, in view of the possibility for complex nonlinearities and 

interactions on a more global scale. 

Here, we study the use of a statistical model for predicting a measure of biological 

environmental quality, allowing regional variation in the coefficients of a multiple linear 

regression model for prediction of a measure of environmental quality. We think that some 

support for a model with region-specific regressions is provided by the suggestion that 

ecoregions should be relatively homogeneous with respect to ecological processes (McMahon et 

al., 2001).  The delineation of regions, as well as the values of regression parameters, are treated 

as unknowns subject to statistical inference procedures.  We use a finite mixture (FM) model.  

With the FM approach, generation of an observation is modeled as a two-stage process in which 

the first stage samples from K subpopulations (termed “components”) and the second stage 

generates observable values by sampling component-specific models.  In our situation, the 

component-specific models are linear regression models.  We use flexible Bayesian inference 

procedures that provide a probabilistic treatment of uncertainty in the delineation of regions, as 

well as for parameters of the regression model. We use somewhat conventional priors and 

sample the posterior using a Markov chain Monte Carlo (MCMC) procedure (see also Viele and 

Tong (2002), and sources indicated therein). 

If a method of cluster analysis method is to be useful in identification of ecoregions, a 

desirable feature is a preference for placing in the same cluster locations that are near together in 

space.  Our current approach for implementing a preference of this type was proposed in 

Lipkovich et al. (to appear), who relied on a type of classification model rather than a finite 

mixture model.  According to this approach we rely upon fixed groups of nearby measurement 

locations, which we term clustering units (CUs).  Measurement locations belonging to the same 
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CU are constrained to belong to the same cluster.  In the FM model framework the components 

may be conceived as populations of CUs rather than populations of measurement locations.   

We present a 2-component model based on a water quality data set for the state of Ohio. 

For that application the CUs are equated to river basins and the measurement units to stream 

segments within basins.  Although our method does not force spatial contiguity of the clusters, 

we find some correspondence between our clusters and important geographic features of the 

state.  

In our application, we found rapid mixing of a posterior sampling algorithm, and no 

evidence of local optima. These results seem to contrast with pessimistic statements in the 

literature of FM models related to the tendency of MCMC algorithms to become trapped in 

neighborhoods of local optima (Celeux et al., 2000; Viele and Tong, 2002; Ter Braak et al., 

2003).  We suggest that the apparent lack of complications in our application is due to imposition 

of a number of constraints on model unknowns.   

In model-based clustering a model identification issue arises from the fact that the likelihood is 

unchanged by permutation of the class indices (Richardson and Green, 1997; Celeux et al., 2000; 

Stephens, 2000; Lipkovich et al., to appear). In an MCMC implementation the same partition 

may occur multiple times with the cluster indices permuted, within the same chain or from one 

simulation to the next.  This problem is often termed the “label switching” problem in the FM 

model literature. If label switching is not taken into account, some posterior summaries may be 

meaningless. Some MCMC convergence diagnostics rely on comparison of independent chains, 

and require that the components be indexed in a way that provides valid comparisons.  For 

purposes of our application we rely on an identification constraint that fixes the assignment of K 

CUs to K distinct components.  Also, we suggest uses of estimated probabilities that pairs of CUs 

belong to the same component.  These probability estimates do not depend on the indexing of 

components.   
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Previous work on finite mixtures of regressions includes maximum likelihood based on 

the Estimation-Maximization (EM) algorithm (DeSarbo and Cron, 1988; Wedel and Kamakura, 

2000).   Viele and Tong (2002) provide a recent review and update of the Bayesian approach 

with MCMC implementation. Related approaches include modeling with finite mixtures of 

multivariate normal or multivariate t distributions.  Some authors emphasize maximum 

likelihood by the EM algorithm (Banfield and Raftery, 1993; Celeux and Govaert, 1995; Fraley 

and Raftery, 1998, 2002; McLachlan and Peel, 2000).  Bensmail et al. (1997) explore Bayesian 

inference for mixtures of multivariate normals with Gibbs implementation. An ecological 

application involves classifying lake communities based on a mixture of multivariate normal 

distributions, implemented with a Gibbs sampler (Ter Braak et al., 2002).  Our approach differs 

in that we treat as fixed, rather than random, the values for a subset of the variables (our 

regressors).  Our approach has much in common with recent Bayesian treed model methodology, 

allowing leaf-specific regressions and relying on Metropolis implementations (Chipman, George, 

and McCulloch, 1998, 2002; Denison, Mallick, and Smith, 1998; Lamon and Stowe, 2002).  

We initially describe our finite mixture model, with only minimal reference to inferential 

issues, as a model for the generation of environmental data. We then describe our Bayesian 

inference approach including our priors and our posterior sampling procedure.  We present an 

application involving prediction of the Index of Biotic Integrity for Ohio Streams.   

2. Finite Mixture Model with Component Linear Regressions 

For each variable a single value is recorded, at each of n measurement locations.  The 

measurement locations are grouped into B categories termed clustering units (CUs), denoted 

CU1,...,CUB.  We assume measurements for in measurement locations in CUi.  The CUs are units 

for clustering in the sense that measurement locations belonging to the same CU are constrained 

to belong to the same cluster.  Thus the output of the clustering procedure is a partition of the set 

of CUs into K categories.  (For our application to Ohio water quality data river basins are 
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equated to CUs.)  We treat K as known and consider models with different values of K for given 

data.   

For purposes of a model-based clustering approach we assume that the data are drawn 

from K true classes which we term “components.” (We reserve the term “cluster” for a category 

defined by a specific partition of observations, for example the set of observations assigned to 

the same component.)  In a model-based approach, the component to which a CU belongs is an 

unknown subject to statistical inference.  A variant of model-based clustering can be based on a 

finite mixture (FM) model.  We may represent the true, unknown component for CUi using a 

vector of unobserved indicators i =z ( )1, ... , i iKz z where ikz equals 1 or 0 according as CUi does 

or does not belong to the kth component.  In the FM approach the indicator vectors for the CUs, 

say 1z , ... , Bz , are realizations of independent multinomial random variables 1Z , ... , BZ , 

identically distributed with parameters 1 and ( )1,..., Kτ τ , where iτ  = ( )iE Z .  The parameters 

1τ ,..., Kτ are termed “mixing proportions.”  

We record values of the response variable and values of p regressors, at in measurement 

locations in CUi.  We assume a component-specific linear regression model with regression 

coefficient vectors 1β , ..., Kβ .  Allowing for component intercepts, each is a column vector of 

length p + 1. Values of the response variable for CUi are arrayed in a column vector iy = 

( )T

1, ... , iny y and corresponding values of regressors in a matrix iX .  We include a column of 1’s 

in iX to allow for the component intercept, so that the matrix is ( )1in p× + .  We use the same 

set of regressors for each component but each regression coefficient including the intercept is 

free to differ among components.  Fixing the partition, the regression model applied to CUi is 

ii i iγ= +y X eβ  where { }1, ... , i Kγ ∈  is the index of the component that includes CUi.  The 

error vector ie is a realization of a random variable ( )2, ~iE N σ0 I . Here 2σ is a common 
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residual variance.  0 and I are respectively a column vector of zeros and an identity matrix, of 

appropriate dimensions. For a pair of CUs, say the ith and jth, the corresponding error vectors 

iE and jE are independent. 

Our unknowns subject to statistical inference thus include mixing proportions 1, ... , Kτ τ , 

component regression coefficients 1β , ..., Kβ , a common residual variance 2σ , and a partition of 

the set of CUs. 

  With regression parameters (coefficients and residual variance) and mixing proportions 

fixed, the posterior probability that CUi belongs to the kth cluster based on observing 1y ,..., By is  

( )
( )

2

2
1

; , 

; , 
ˆ k i i k

ik K
l i i ll

z
τ φ σ

τ φ σ
=

=
∑

β

β

y X I

y X I
              (1) 

where ( ) ; , φ y m V  denotes the density of a normal distribution with mean vector m and 

covariance matrix V. We will refer to îkz as a “membership probability.” 

To cluster the CUs it is natural to use estimated membership probabilities and assign a 

CU to the component that includes it, with highest estimated probability.  In a maximum-

likelihood approach, maximum likelihood estimators for the mixing proportions and regression 

parameters may be plugged into Expression (1) and an observation may be assigned to the 

component with the highest “plug-in” posterior probability.  In a Bayesian approach, posterior 

component membership probabilities can be computed easily using posterior sampling, taking 

into account uncertainty in the values of parameters that might be fixed with a “plug-in” 

approach. However, Expression (1) has a role in a Gibbs sampler implementing the Bayesian 

approach.  In that context the quantity is a function of the parameters for fixed data which we 

may write { } { }( )2, ,îk k kz τ β σ .  
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3 Bayesian Approach with Posterior Sampling 

The components of our Bayesian approach are a joint prior distribution for the unknowns 

and an algorithm for sampling the posterior. For the logarithm of 2σ  and the ( )1K p +  

regression coefficients we assume a joint prior approximately constant on R1+K(p+1) , independent 

of the mixing proportions, apart from implicit modifications of the prior in the form of 

constraints that we may impose on the Metropolis implementation.  (Constraints on the prior for 

our current implementations include sign constraints for regression coefficients and a minimum 

value that applies to each mixing proportion.)   We require a minimum number of units per 

cluster adequate to result in a proper posterior.   

A conventional prior for the mixing proportions is a Dirichlet distribution with the 

simplex in K – 1 dimensions as the support and parameters ( )1,..., Kα α .  In our applications we 

have assumed 1= = Kα α α= , so that the mixing proportions are identically distributed, each 

with mean 1 / K. 

Before describing our current algorithm, it seems helpful to present a “straightforward 

Gibbs sampler.” The algorithm alternates between random partition of the CUs into clusters, and 

random generation of regression parameters, conditioning on the current partition. Gibbs 

algorithms are well established for implementation of finite mixture models, as recently 

reviewed by Viele and Tong (2002).  Unknowns are drawn in turn from distributions with other 

unknowns fixed, which is to say by sampling of “full conditional” distributions. In our situation 

the full conditional distributions are standard results.  Our current algorithm was derived by 

modifying this Gibbs sampler, after encountering some difficulties in applying the latter.  

 We display below expressions for a single iteration of the straightforward Gibbs sampler, 

updating each unknown.  Regarding notation for describing iterative computations, it seems 

helpful to use primes to indicate variables that change in value from one iteration to the next.  In 
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order to distinguish successive updates, a single prime indicates the value carried from the 

previous iteration, while double primes indicate the value at the end of the iteration. For example 

k′β  is the value of kβ before the expressions are executed and k′′β the value afterwards. The 

transpose of a matrix M will be denoted TM .  

With these conventions the updating expressions for our initial Gibbs sampler are 

( )

( ) ( )

( ) ( ) ( )
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1
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In words, we generate a partition by assigning each CU to a component at random, where îkz  is 

the probability of assigning CUi to component k.  We use the resulting counts of CUs per cluster 

as observed counts for updating the full conditional for the mixing proportions.  Then, fixing the 

partition, we update the regression parameters by sampling the posterior of a standard Bayes 

linear model.  Our expression for updating kβ uses a design matrix kX  and dependent column 

vector ky  formed by stacking, in the same order, design matrices and dependent vectors for the 

CUs in the current cluster k.  Finally, we update the membership probabilities using Expression 

(1).  We initialize by setting each of the BK membership probabilities{ }îkz equal to 1/ K . 

We allow constraints on the signs of regression coefficients, the ranges of mixing 

proportions, and the counts of locations per cluster. We assume a minimum count of locations 

for each cluster (combining the count of locations for CUs belonging to a cluster).  Propriety of 

the posterior may dictate a minimum count in case of an improper prior for regression 

parameters (Roeder and Wasserman, 1997; Diebolt and Robert, 1994).  Based on essentially an 
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argument in Roeder and Wasserman (1997), in order for the posterior to be proper for the 

regression parameters, the conditional posterior fixing the partition must be proper for each 

partition that we allow.  Thus with a conventional improper prior we must have at least p + 1 

measurement locations in each cluster.  At least one cluster must include p + 2 or more locations. 

We require a larger count than the minimum for propriety of the posterior, based on a concern 

that design matrices 1X ,..., KX may be ill-conditioned if the cluster sizes are too small.  To 

implement constraints in the MCMC algorithm we simply repeat the series of updating 

expressions, on each iteration, until all constraints met.   

For an iteration of the Gibbs algorithm described above, cluster assignments are updated 

for all CUs, followed by updating of other unknowns.  Instability may result from allowing large 

changes of the partition from one iteration to the next, considering that most CUs may be re-

assigned among components in the first step (see Viele and Tong, 2002).  We suggest that this 

instability may be exacerbated in the event of multicollinearity or points of high influence.  In 

our initial application the algorithm worked well for a 2-component model but not for 3- and 4-

component models. One apparent difficulty was that the constraints were not met in a reasonable 

number of attempts because partitions that met the minimum cluster size were improbable, given 

values of other unknowns.  Because of these difficulties a new algorithm was devised which 

worked well for 3- and 4-component models for our application, as well as for the 2-component 

model.  (We checked the revised algorithm by comparing results to the initial algorithm for the 

2-component model.)   

Our current algorithm differs from the initial Gibbs sampler by two modifications.  First, 

instead of updating the cluster assignments for all CUs at once, the algorithm is modified so that 

updating the cluster assignment of a single CU alternates with updating of the other unknowns 

(regression parameters, mixing proportions).  Such a feature can be pseudo-coded as  
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 for CU1,...,CUB    {  
        update the cluster assignment of CUi; 
   update mixing proportions and regression parameters; 
   update membership probabilities   

} 

In contrast to our initial Gibbs sampler the cluster assignments for individual CUs are updated at 

a lower frequency than regression parameters and mixing proportions.  

The CUs may be considered in systematic or random order.  In our approach CUs are 

considered in an order that is random within cycles of length B, such that the cluster assignment 

of each CU is updated once per cycle.  At the start of the simulation we generate a random 

permutation of the indices 1,...,B, which gives the order that CUs are considered for the first B 

iterations.  On the (B+1)th iteration we generate a second random permutation giving the order 

for iterations B+1,...,2B, and so on.   

Our second modification relates to the procedure for updating the cluster assignment of a 

single CU. One may sample from the full conditional as in the initial Gibbs sampler.  However, 

in our current algorithm we use an explicit Metropolis step similar to that used by Lipkovich et 

al. (to appear).   The Metropolis proposal is to move a randomly selected CU from its current 

cluster to another cluster.  In the case of K > 2, the new cluster is chosen with equal probability 

from the K – 1 candidates. For a proposal to move CUi from cluster k to cluster l, the acceptance 

probability based on multinomial full conditionals equals { }1min r,  where, based on 

Expression (1),   

( )
( )

2

2

ˆ
ˆ

k i i kik

il l i i l

zr
z

τ φ σ

τ φ σ
= =

β

β

; , 
; , 

y X I
y X I

.                         (2) 

With this modification it was relatively easy to satisfy the minimum cluster size. 

It is valuable to observe from Expression (2) that as α is increased in value the mixing 

proportions effectively cancel in the ratio r so that partitions are compared based on likelihoods.  
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In effect, the result is a “classification likelihood” method (see the discussion).  Updating of 

other unknowns does not depend on the mixing proportions.    

To estimate the probability that CUi belongs to cluster k from the posterior sample, we 

compute the fraction of the sample with CUi belonging to cluster k.  We can use the term 

Estimated Component Membership Probabilities (ECMPs) for these estimates and denote them 

{ }ikz .  Using the ECMPs, assignment of CUs to clusters is naturally accomplished by assigning 

each CU to the component that includes it with highest posterior probability. To express 

uncertainty in classifying the ith CU we may use { }11 , ... , maxk i iKz z− , as suggested by 

Lipkovich et al. (to appear).  

The ECMPs depend on the indexing of clusters and are therefore susceptible to the label-

switching problem.  We suggest that useful information on the pattern of clustering can be 

obtained from the posterior sample based on quantities that do not depend on the cluster 

indexing, which we term Estimated Co-Clustering Probabilities (ECCPs).  The ECCPs can be 

represented in a symmetric matrix giving in the ith row and jth column the fraction of the 

posterior sample for which CUi and CUj are assigned to the same cluster.  An ECCP estimates 

the probabilities that a pair of CUs belongs to the same component.  A graphical display that we 

find useful is a dendrogram such as our Figure 1, which uses the matrix of ECCPs as a similarity 

matrix. Also, as an approach to resolving the label-switching problem in some cases, in the next 

section we use ECCPs to select an identifying constraint on cluster composition.   

4. Application to Analysis of the Index of Biotic Integrity for Ohio Streams 

We illustrate our methods using a data set representing 303 measurement locations on 

streams in Ohio. The data analyzed here are a subset of those assembled by Dyer et al. (1998, 

DWCSW).  Our response variable is the Index of Biotic Integrity (IBI), an index of the health of 

fish communities.  From the data available we used the measurement locations with complete 
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data for IBI and four regressors.  Our data represent 16 of the 23 basins identified by DWCSW.  

Our regressors (using variable names from DWCSW) are: 

 DO_MED = site median dissolved oxygen concentration (mg/L); 
 PH_MED = site median pH;  
 ZNTOT_MED = site median total zinc ( g/Lµ ); and 
 QHEI = Qualitative Habitat Evaluation Index. 
 

We will usually refer to the regressors simply as DO, pH, zinc, and QHEI.  IBI and QHEI are 

“multimetric indices” computed by summing together contributing “metrics.” Each contributing 

metric has a range of 1-5 with a value of 5 representing the most favorable value (references in 

DWCSW).   Probably as a result of the restricted range, our response variable is not outlier 

prone.  

For IBI and the QHEI the available data are a single value per location. For other 

variables the data were reduced to a single value per location, using the median in case of 

multiple values for a location (a common practice in evaluation of water quality data). 

Zinc and oxygen concentrations were transformed to logarithms.  (pH is the log of a 

concentration – of hydrogen ions – by definition.)  Logarithmic transformation of concentration 

measurements is conventional in regression analysis of water quality data.  Each regressor was 

centered and scaled (after logarithmic transformation, for zinc and DO), to enhance 

comparability of coefficients among regressors.   

The model was implemented with sign constraints on regression coefficients. A negative 

sign is expected for the coefficient for zinc, which at high concentrations is toxic to aquatic 

organisms. Low DO excludes some aquatic species and is often a consequence of eutrophication, 

for example from agricultural fertilizers. A well-known ecological effect of low pH 

(acidification) is to increase the availability of toxic metals such as zinc, cadmium, and 

aluminum.  pH is in fact negatively correlated with zinc in our data.  Preliminary analysis 

suggests that our sign constraints for regression coefficients are consistent with the data: In a 
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standard multiple regression of IBI on the four regressors, each coefficient had the sign in 

agreement with our constraint and the corresponding t statistic was greater than 3 in absolute 

value.    

Additional constraints are a minimum count of 15 measurement locations per cluster 

(combining the location counts for all basins belonging to a cluster), and a minimum value of 0.1 

for each mixing proportion. Except where otherwise indicated the results presented in this 

section are obtained with a 2-component model with the Dirichlet parameter α set equal to 50.  

Models with 3 and 4 components were also evaluated, and for the 2-component model we 

evaluated alternative values of α .   For 3- and 4-component models, the clusters were not as 

well separated or interpretable as for the 2-component model.  Further exploration of models 

with 3 or more components may reveal additional information at a scale of resolution finer than 

provided by the 2-component model. Results for the 2-component model suffice for present 

purposes.    

The algorithm was programmed in R.  Sampling of the multivariate normal distribution 

was accomplished using the R contributed package mvtnorm (Genz, Bretz, and Hothorn, 2004). 

Except where otherwise indicated the results displayed are based on a posterior sample of size 

10000, excluding a burn-in sequence of 1000 cycles.  

Figure 1 displays the result of an average linkage cluster analysis, using distances based 

on the ECCPs, performed with the base R function hclust().  (One minus ECCP is a distance 

measure satisfying the triangle inequality.) The dendrogram suggests well-defined clusters apart 

from the cluster assignments of a few basins.  

We have not yet encountered indications of label switching within individual chains for 

the 2-component model, apparently because the components are well separated.  However, the 

indices will sometimes be permuted between successive simulations. In order for the results to be 

comparable among simulations we impose an identification constraint on component 
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membership: From the ECCP matrix we observed that Basins 1 and 19 belong to different 

components with probability about one.  Based on this observation we constrained basin 19 to 

belong to component 1 and basin 1 to belong to component 2. These constraints were 

implemented by setting membership probabilities 19 1,ẑ  and 1 2,ẑ  equal to one, and setting to zero 

the probabilities of belonging to other components, for basins 1 and 19. We suggest this type of 

approach to the label switching problem is applicable in clustering applications of FM models 

when the components are well separated, perhaps as indicated by a dendrogram based on ECCPs 

such as our Figure 1.    

The identifying constraint could have relied upon some other set of basins.  However, we 

observed that for each pair of basins that belong together with estimated probability 0.1 or less, 

one belongs to component 1 with probability at least 0.9, and the other to component 19, also 

with probability 0.9 or greater.    

*** Figure 1 about here *** 

Table 1 compares different values of the Dirichlet parameter α with respect to the posterior 

probability that a given basin belongs to Component 1.  For most basins there is little uncertainty 

in the component assignment.  The final row of the table gives the measure of uncertainty, 

averaged over basins.  (For an explanation of the final column in Table 1, see remarks associated 

with Expression 3.)  Based on Table 1, we can identify a set of basins that has relatively high 

certainty in assignment to components, and this identification is not sensitive to the value of α . 

For two basins with relatively greater uncertainty, the most probable assignment is observed to 

depend on α .   

*** Table 1 about here *** 

Figure 2 compares the two components with respect to the posterior distribution of each 

regression coefficient, including the intercept.  There is a clear separation based on the intercept 

and the coefficient for QHEI, and somewhat less pronounced separation for the zinc coefficient.  
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We note that for each coefficient the posterior distribution is well-separated from zero, 

suggesting again that our sign constraints are not contradicted by the data.   

*** Figure 2 about here *** 

We used ArcView to evaluate the spatial disposition of measurement locations for the 

two clusters, relative to ecologically relevant features of the geography of Ohio. (ArcView is a 

trademark of Environmental Systems Research Institute, Inc.)  Figure 3 displays the basins and 

component assignments.  Also shown is the boundary between the drainages of Lake Erie and 

the Ohio River, a feature that may relate to the interpretation of the results (see discussion).   

*** Figure 3 about here *** 

A graphical check on convergence for the 2-component model was based on independent 

chains using the method of Gelman and Rubin (1992) as implemented in the R contributed 

package coda (Plummer, 2005).   We applied the approach based on 5 chains with independent 

random initial partitions, to check convergence for the mixture log-likelihood, the mixing 

proportions, and the regression parameters.   The results suggested that 1500 iterations suffice 

after discarding an initial burn-in sequence of 500 iterations.  In addition numerous repetitions 

with α = 50 during program development have provided no indications of local optima.  A 

technique that we have found useful for searching for local optima is an index plot of the FM 

likelihood, combining in sequence the results for the independent chains (see for example 

Chipman et al, 2002).  

5. Discussion  

Our approach is in some ways an extension of the classification likelihood (CL) approach 

of Lipkovich et al. (to appear).  In a finite mixture model, the Dirichlet prior for mixing 

proportions represents the highest level in the probability hierarchy.  For a classification model 

the highest level in the probability hierarchy is the partition.  For a Bayesian CL model, prior 

probabilities would be specified directly for partitions, for example, by assuming that each 
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partition is equally probable a priori. The CL approach of Lipkovich et al., like our approach, 

relies on a Metropolis algorithm to explore a space of partitions, allowing a distinct regression 

model for each cluster. Other features in common include the grouping of observations into CUs, 

with a requirement that measurement locations belong to the same component if they belong to 

the same CU, and a Metropolis proposal for updating the partition by reassigning a randomly 

selected CU to a randomly selected component. Our approach differs most importantly by 

providing inference jointly for the partition and parameters of the regression model.  According 

to the approach of Lipkovich et al. partitions are compared based on the value of the optimized 

classification likelihood – optimized over regression parameters -- with a penalty of the BIC 

form (Schwarz, 1978). We have observed that when the Dirichlet parameter α is increased in 

value the result is in effect a CL algorithm, but without regression parameters eliminated by 

optimization or integration.   

However we observe that when interest is in the partition, a significant simplification 

may be achieved by eliminating component distribution parameters, using exact or approximate 

Bayes factors. Such simplification may be helpful particularly in the case of a multivariate 

response.  

Methods specifically used to identify regions may benefit by incorporation of some 

tendency for locations that are nearby in space to fall in the same cluster. An approach 

sometimes used is to include spatial coordinates among the variables included in a conventional 

cluster analysis. The approach may yield useful results but may be restrictive with regard to the 

geometry of region boundaries.  Considering the correspondence between some cluster analysis 

procedures and modeling with multivariate normal mixtures (Gordon, 1999), the approach may 

favor clusters with elliptical boundaries. Lamon and Stowe (2002) used spatial coordinates in a 

Bayesian classification tree approach, resulting in regions with boundaries parallel to lines of 

latitude or longitude.   
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Our initial approach, applicable for a data set where measurement locations are classified 

by CU, is to require that locations belong to the same cluster if they belong to the same CU 

(Lipkovich et al., to appear). However, we think there may be multiple types of spatial constraint 

that deserve consideration. We observe that our explicit Metropolis step is potentially very 

flexible for purposes of implementing alternative spatial constraints.  Modifications of the 

Metropolis proposal can be used to exclude certain partitions, while modifications of the 

acceptance criterion can be used to introduce a probabilistic preference for partitions with 

desirable properties.   

The best correspondence we have found between our components and a geographic 

feature is a rough correspondence between our component 1 and the Lake Erie drainage area, and 

between our component 2 and the Ohio River drainage area (see Figure 3). However, this 

correspondence with drainage areas may be partly related to our requirement that locations 

belong to the same component if they belong to the same river basin.   

Of considerable interest to environmental analysis is the degree of correspondence 

between results from a proposed method of cluster analysis and standard ecoregions.  

(Ecoregions are not shown in our Figure 3.  Ecoregion maps are available from USEPA (2005).)   

The best correspondence between our results and a standard ecoregion is between our component 

one and the Huron and Erie Lake Plains (HELP) ecoregion.  However, some river basins in the 

Lake Erie drainage have lowland stretches in the HELP and headwaters in the Eastern Corn Belt 

Plains (ECBP) ecoregion.  With our approach, these parts cannot be assigned to separate 

components.  If we ignore the headwater stretches of these basins, there is a better 

correspondence between our component 1 and the HELP.   

 McMahon et al. (2001) have suggested the use of statistical techniques for identifying 

regions of about the size of USEPA Level III ecoregions.  Our results seem to provide a limited 
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corroboration of this suggestion.  We find interpretable regions of about the size of Level III 

ecoregions, and with an imperfect correspondence of one component to a standard ecoregion.   

 Numerous simulations started from independent partitions indicate rapid mixing for our 

2-component model as applied to the Ohio data, and no indications of local optima.  This 

relatively favorable outcome may result from constraints on the signs of coefficients, on the sizes 

of clusters, and on ranges of mixing proportions.  Indeed, when we relaxed the sign constraints 

for the regression coefficients a second optimum was evident in some simulations, having lower 

likelihood than the one reported here, and with the coefficient for zinc having the “wrong” sign.  

(While this observation is of some interest from the standpoint of the role of constraints, we feel 

confident that a model acceptable for use in predicting ecological quality should not have a 

negative coefficient for zinc concentration.)   

Finally, we suggest that the application of statistical classification procedures for defining  

geographic regions useful for environmental analysis is a promising area for collaboration 

between statistical modelers and other scientists in view of the range of subject-matter and 

statistical issues.   
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Figure 1.   Dendrogram on use of Estimated Co-clustering Probabilities as a similarity.   
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Table 1.   Estimated posterior probabilities of belonging to component 1 for each 
basin.1   

Dirichlet parameter α Basin index 2 Basin Name 
1 50 ∞ 3 

1 Hocking R. 0.00 0.00 0.00 
2 Scioto R. 0.00 0.00 0.00 
3 Grand R. 0.03 0.07 0.07 
4 Maumee R. 1.00 1.00 1.00 
5 Sandusky R. 0.97 0.99 0.99 
6 Centrial Ohio Tributaries 0.00 0.00 0.00 
7 Ashtabula R. 0.36 0.50 0.57 
9 SE Ohio Tributaries 0.00 0.00 0.00 

11 Little Miami R. 0.04 0.05 0.08 
13 Rocky R. 0.79 0.88 0.90 
14 Greater Miami R. 0.00 0.00 0.00 
15 Chagrin R. 0.14 0.22 0.25 
16 Portage R. 0.88 0.96 0.96 
17 Muskingum R. 0.00 0.00 0.00 
18 Mahoning R. 0.47 0.66 0.66 
19 Cuyahoga R. 1.00 1.00 1.00 
Uncertainty averaged over basins 0.088 0.084 0.082 

 

1 For each model the posterior sample is obtained by combining 5 chains with 
independent initial partitions, each chain of length 1500-4500 after deletion of an initial 
burn-in sequence of length 500. 
 

2 Basins are indexed as in Dyer et al. (1998).   
 

3 The algorithm become insensitive to α at large values of that parameter.  (See the 
remark following Expression (2).). 
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Figure 2.  Distribution of posterior sample for component regression intercepts (left) and the 
coefficient for each regressor (right). 
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Figure 3.  Spatial disposition of two clusters.   The boundary between the Lake Erie drainage 

area and the Ohio River drainage area is indicated using a heavy line.  River basins assigned to 

component 1 are shaded most lightly; those assigned to component 2 most darkly.  Basins with 

intermediate shading did not contribute to the analysis because of missing values for some 

measurement locations.   

 

 

 
 


