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Profile monitoring is a relatively new technique in quality control used when the product or
process quality is best represented by a profile (or a curve) at each time period. The essential
idea is often to model the profile via some parametric method and then monitor the estimated
parameters over time to determine if there have been changes in the profiles. Previous
modeling methods have not incorporated the correlation structure within the profiles. We
propose the use of linear mixed models to monitor the linear profiles in order to account for
the correlation structure within a profile. We consider various data scenarios and show using
simulation when the linear mixed model approach is preferable to an approach that ignores
the correlation structure. Our focus is on Phase I control chart applications.
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Introduction

Control charts are known to be effective tools for monitoring the quality of processes and

are applied in many industries. Data occur sequentially in time and often data are reduced to

a statistic or two which represent the current state of the process. Phase I of the monitoring

scheme consists of determining whether or not historical data indicate a stable (or in-control)

process. Phase II consists of monitoring future observations using control limits calculated

from Phase I data to determine if the process continues to be in-control. A more recent field

of research in quality control known as profile monitoring deals with functional data or a

curve (the “profile”) collected at regular time intervals. Profile monitoring is becoming more

prevalent because of the large amounts of data available with today’s more sophisticated

data collection systems. It combines the idea of fitting models from regression with the

idea of separating common cause variability from special cause variability in quality control.

For a detailed overview to the concepts, examples of its application, and a review of the

literature, see Woodall et al. (2004).

Kang and Albin (2000), Kim, Mahmoud, and Woodall (2003), Mahmoud and Woodall

(2004), and Wang and Tsung (2005) all considered monitoring of linear profiles. The idea

of these previous methods is to model the linear profiles using some parametric method and

then monitor the estimated parameters over time to determine if the profile change. Our

approach builds on this basic idea. Because the parameter estimators in our case may be

correlated, it is convenient to monitor them using a multivariate control method such as one

based on the T 2 statistic.

The previous work on profile monitoring has been based on the assumption that the

profiles are independent of each other and that the random errors associated with the mea-

surements within a profile are also independent of each other. This is often an unrealistic
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assumption in practice for many types of data. For example, profiles may exhibit spatial

correlation if they represent measurements of the physical dimensions of an object. They

may exhibit serial correlation if the observations within a profile are collected over time.

Therefore, we propose the use of mixed models to monitor the profiles in order to account

for the correlation structure within profiles and show using simulation situations when the

mixed model approach is preferable. We will focus here on Phase I control chart applications.

We first discuss the linear mixed model formulation and the properties of the resulting

estimators. We review briefly the literature that has proposed methods for detecting outlying

data in the linear mixed model and present our proposed method. We explain the setup of

the simulation studies performed and show our results for several different data scenarios.

We conclude with an example of our proposed method applied to linear calibration data.

Model Formulation

The linear mixed model (LMM) is very flexible and capable of fitting a large variety of

datasets. It is widely used for repeated measures data or longitudinal studies where data

are grouped. The form of the LMM that we use is that of Laird and Ware (1982) which

can be considered an extension of the classical linear model. The literature on linear mixed

models will often refer to the collection of data that forms a profile as a cluster or subject,

depending on the particular application. We use the term profile throughout but note that

applications of the methods and analysis presented here apply if the data are represented by

clusters or subjects. The LMM allows us to account for the correlation within profiles and

to consider the profiles as a random sample from a common population distribution, which

may be more realistic.

If we have m profiles of data, each of which has ni measurements, where i refers to the
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ith profile, we can fit a separate linear model to each profile. The model fit in matrix form

is given by

yi = Xiβi + ǫi for i = 1, 2, . . . ,m (1)

where yi is a ni by 1 vector of responses for profile i, Xi is a ni by p matrix of the regressor

variables associated with the fixed effects, βi is the p by 1 parameter vector of fixed effects

for the ith profile, and ǫi ∼ MN(0,Ri) is the ni by 1 vector of errors where Ri is a ni by ni

positive definite matrix. If the errors are assumed to be independent, then Ri = σ2I where I

is the identity matrix and the estimates of the parameters can be easily obtained using least

squares (LS) methods. The estimated parameter vector for each profile is given by

β̂i,LS = (X′

iXi)
−1X′

iyi for i = 1, 2, . . . ,m. (2)

In contrast, the LMM has random effects in addition to the fixed effects of the classical

linear model and is given by

yi = Xiβ + Zibi + ǫi for i = 1, 2, . . . ,m, (3)

where β is a vector of fixed effects that is the same for all profiles, Zi corresponds to a ni by

q matrix of the predictor variables with random effects, bi ∼ MN(0,D) is a q by 1 vector of

random effects for the ith cluster where D is a q by q positive definite matrix. The model is

flexible enough to allow the errors to be independent or correlated. If correlated, Ri is often

assumed to be a simple form such as compound symmetry (CS) or autoregressive (AR) in

order to reduce the number of covariance parameters that need to be estimated. For more

details on the various types of correlated error structures that can be assumed for Ri, see

Littell et al. (1996) or Schabenberger and Pierce (2002). Similar structure can be imposed

on D, but here we restrict D to be a diagonal matrix. Thus the random effects are assumed

to be uncorrelated with each other.
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In addition, we assume that cov(ǫi,bi) = 0, which means that the random effects and

the random errors are uncorrelated, resulting in the conditional model given by

yi|bi ∼ MN(Xiβ + Zibi,Ri). (4)

Furthermore, we assume that Zi is either a subset of or equal to the Xi matrix, so any

columns in the Zi matrix are also contained in the Xi matrix. The case where Zi = Xi is

referred to as the random coefficients model (Demidenko, 2004) because all the fixed effects

have a corresponding random effect. This restriction of Zi being contained within Xi does

not eliminate any of the forms of this model that are in common practice. For examples of

cases where this restriction is used see Waternaux, Laird, and Ware (1989), Lesaffre, Asefa,

and Verbeke (1999), Longford (2001), or Xu (2003).

The corresponding marginal model is given by

yi ∼ MN(Xiβ,Vi) for i = 1, 2, . . . ,m, (5)

where Vi = ZiDZ′

i + Ri is a ni by ni positive definite matrix.

The model allows for two levels of correlation for the measurements within a profile. The

first results from the random effects which cause all the measurements within a profile to

be correlated to each other. The second results from the within-profile variance-covariance

matrix, Ri. Vonesh and Chinchilli (1997, p. 256) noted that in some applications it makes

sense to consider both levels and give some references where both levels are used. Chi and

Reinsel (1989) also recommended the use of both levels of correlation where needed.

If a particular application has only the first level of correlation, the response is distributed

as yi ∼ MN(Xiβ,Vi) where Vi = ZiDZ′

i + σ2I. If the application only uses the second

level of correlation (that is, a fixed effects model where D is a null matrix and Ri is non-

diagonal) then a time series model can often be fit to account for serial correlation among
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the responses. Time series models can be more restrictive because they often require equally

spaced data. A LMM that uses neither of the two levels of correlation is simply the classical

general linear model in (1) because Zi = 0 and ǫi ∼ MN(0, σ2I).

On occasion, a time series model will be fit to multiple profiles but such models often

require a large number of observations per profile to ensure that the model obtained will be

representative of the data. On the other hand, the LMM is usually preferable when there are

multiple profiles and there are a smaller number of observations per profile which may/or

may not be time ordered. With the LMM one seeks to pool information from multiple profiles

in order to improve estimates and subsequent inference while with a time series model one

does not usually attempt to pool information.

Data Scenarios

Profile monitoring data can be classified into several different scenarios depending on

the number of observations per profile and where those observations are located within the

profile. For example, all of the profiles can have measurements at the same location for

all profiles. We refer to this scenario as balanced, whether or not the locations are equally

spaced from each other. This implies that ni = n for i = 1, 2, . . . ,m, and that the values of

the regressors (and consequently, Xi and Zi) are the same for all profiles.

Unbalanced data refers to the situation where Xi and Zi are not necessarily the same

for all the profiles. They may not even have the same number of rows per profile, which

indicates an unequal number of observations per profile. We believe that profile monitoring

applications are more likely to have balanced data (equally or unequally spaced) because

the emphasis in quality control is consistent data collection to ensure that changes in the

responses are a result of changes in the quality characteristics being monitored. Nonetheless,
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we will consider both balanced and unbalanced data in our simulation studies. In order to

simplify our comparisons, balanced and unbalanced data will both have the same number of

observations for all the profiles, that is ni = n for i = 1, 2, . . . ,m.

Estimation in the LMM

Under the distributional assumptions of the marginal model in (5), the fixed-effect pa-

rameter estimators representing the population average of all the profiles is given by β̂MIX ,

and the estimates of the random deviations from that population average are given by b̂i.

If Vi (and consequently D and Ri) are assumed known then it can be shown that

β̂MIX =

(
m∑

i=1

X′

iV
−1
i Xi

)
−1 (

m∑

i=1

X′

iV
−1
i yi

)
, (6)

and the best linear unbiased predictors (”blups”) as

b̂i = DZ′

iV
−1
i

(
yi − Xiβ̂MIX

)
. (7)

It can be shown that β̂MIX ∼ MN
[
β, (

∑m

i=1 X′

iV
−1
i Xi)

−1
]

under the assumption of multi-

variate normality (Schabenberger and Pierce, 2002).

In practice, V is not known and therefore must be estimated prior to obtaining β̂MIX

and b̂i. V can be estimated via maximum likelihood (ML) or restricted maximum likelihood

(REML) and an iterative algorithm. REML is often preferred (Schabenberger and Pierce,

2002, p. 437) because it produces estimators with less bias than estimators obtained using

ML. The estimates obtained from ML and REML are often very similar to each other and

can sometimes be asymptotically equivalent (Demidenko, 2004, p. 146). Nonetheless, we

utilize REML for all of our simulation studies.

Once the solution is obtained, the estimated values of V̂−1 and D̂ are then placed in

(6) and (7) to obtain the parameter estimates. If a consistent estimate of V is used, the
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distribution of β̂MIX will be asymptotically normal (Demidenko, 2004), that is β̂MIX

a
∼

MN
[
β, (

∑m

i=1 X′

iV
−1
i Xi)

−1
]
. The blups from (7) are referred to estimated best linear unbi-

ased predictors (“eblups”) when an estimated variance-covariance matrix is used. As noted

by Verbeke and Lesaffre (1996) and Ritz (2004), the distribution of the eblups does depend

on the distribution of both the bi’s and the ǫi’s. In particular, the eblups will be normally

distributed as long as the random effects and errors follow a multivariate normal distribution

although the distribution of the eblups is not necessarily the same as that of the blups.

The estimated parameter vector for the ith profile is given by

β̂i,MIX = β̂MIX + b̂i for i = 1, 2, . . . ,m, (8)

which can be found using (6) and (7). Thus rather than using the actual data in the

T 2 statistic we use the estimates of the model coefficients obtained from the data. We

are reducing the problem of detecting changes in the data profiles to detecting changes

in the parameters that summarize the profiles. This is a more efficient approach because

we are monitoring a smaller number of parameters rather than a larger number of data

observations. Of course, our approach is based on the assumption that the fitted model

adequately describes the profile data.

When obtaining the estimates of V in the LMM, non-convergence of the iterative algo-

rithm can occur. For most simple problems non-convergence is rare but is more common

when the data are unbalanced, the variance components in V are small and/or the model

has been misspecified (Verbeke and Molenberghs, 2000, Chapter 5.6). For all our simulation

studies we tracked the frequency of non-convergence and found it to be small or non-existent.

To reduce the frequency of non-convergence, it is often recommended to use good starting

values for the fixed parameters and components of the variance-covariance matrix. These

starting values can be obtained via graphical methods (Schabenberger and Pierce, 2002). In
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some situations where the non-convergence was more likely to be present, we used in our

simulations the known parameter values as starting values of the iterative algorithm as was

done by Hartford and Davidian (2000) for nonlinear models. This reduces the frequency of

non-convergence just as would occur if a knowledgeable researcher were to spend a sufficient

amount of time exploring, cleaning, and appropriately analyzing a single dataset.

Check of Model Assumptions

When a parametric model is fit to profile data, it is important to know if the model fits

the data well and if the model assumptions are met. If so, then the parameter estimates

obtained will be a good representation of the profile and the estimates can then be used to

determine if the Phase I data are in control. Goodness-of-fit techniques and other checks of

the model assumptions for the LMM such as those discussed in Verbeke and Mohlenberghs

(2000, Ch.4) and Demidenko (2004) can be used. If there is a not a good fit of the LMM to

the data, then determining which profiles are outlying is a risky activity and should be used

with caution.

Diagnostics in LMM

Diagnostic methods to detect outliers and influential points have been proposed in LMM

but they are not well developed. The need for better or more utilized diagnostics for models

with random effects and/or correlated errors has been noted by a number of authors, in-

cluding, Ghosh and Rao (1994), Verbeke and Molenberghs (2000), Tan, Ouwens, and Berger

(2001), Houseman, Ryan, and Coull (2004) and Haslett and Dillane (2004). Diagnostic

methods are needed to detect outlying profiles as well as outlying observations within pro-

files. Our focus is determining outlying profiles rather than observations within a profile.
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As noted by Langford and Lewis (1998), once the outlying profile is determined, it can be

examined for outlying observations.

There are a wide variety of methods for determining outlying profiles in LMM. A case

deletion method was proposed by Banerjee and Frees (1997). A local influence approach

was proposed by Lesaffre and Verbeke (1998) extended the local influence approach of Cook

(1986) to the LMM. A parametric bootstrap approach was proposed by Longford (2001).

Tan, Ouwens, and Berger (2001) considered a Cook’s distance measure and found that it does

not work well in determining the correct outlying profile unless it is modified. Demidenko

and Stukel (2005) derived alternative forms of leverage and Cook’s distance measures.

Our approach determines outlying profiles based on the distance of the estimated param-

eter vector from the center of the group of estimated parameter vectors and is most like that

of Waternaux, Laird, and Ware (1989), who proposed to detect outlying profiles by using

the Mahalanobis distances of the eblups. They proposed to calculate

T 2
varbi,i = b̂i

′V ar(b̂i − bi) b̂i for i = 1, 2, . . . ,m, (9)

where V ar(b̂i − bi) is given by (Harville, 1976; and Laird and Ware, 1982)

V ar(b̂i − bi) = D − DZ′

iV
−1
i ZiD + DZ′

iV
−1
i Xi(X

′

iV
−1
i Xi)

−1X′

iV
−1
i ZiD

′. (10)

To use the expression in (10) one must replace D and Vi by their estimates. Waternaux,

Laird, and Ware (1989) proposed to use a Q-Q plot of the values for T 2
varbi,i to detect outliers.

We calculate the Mahalanobis distance as in (9) with different estimators of the variance-

covariance matrix. We will evaluate the method of Waternaux, Laird, and Ware (1989) in

our simulation studies to determine its efficacy.
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T 2 Statistic for LMM

For most control chart applications, where the profiles occur at regular time periods, the

data collection is well controlled as if from a designed experiment. Thus the number of

measurements per profile will often be the same and at the same locations along the profile.

Using (8) the two T 2 statistics based on the classical estimators are given by

T 2
1,i,MIX = (β̂i,MIX − βMIX)′S−1

1,MIX(β̂i,MIX − βMIX) for i = 1, 2, . . . ,m, (11)

where

S1,MIX =

∑m

i=1(β̂i,MIX − βMIX)(β̂i,MIX − βMIX)′

m − 1
, (12)

and where

βMIX =

∑m

i=1 β̂i,MIX

m
. (13)

T 2
1,i,MIX will be proportional to a beta distribution if the matrix Vi is known, and asymp-

totically proportional to a beta distribution if a consistent estimate of Vi is obtained. How-

ever, as shown by Sullivan and Woodall (1996), T 2
1,i,MIX is not effective in detecting sustained

step changes in the mean vector, nor is it effective in detecting multiple outliers (Vargas,

2003). While T 2
1,i has been shown to be effective in detecting a single moderately-sized mul-

tivariate outlier as shown in Figure 1 of Vargas (2003), a single arbitrarily large outlier or

step change can render the T 2
1,i statistic useless. We concur with the conclusions of Sullivan

and Woodall (1996) and Vargas (2003) and do not recommend the use of the T 2
1,i statistic

for Phase I analysis when outliers or step changes are present.

An alternative is to base the T 2 statistic on the sample mean and the variance-covariance

matrix of the successive differences between vectors (Holmes and Mergen, 1993). If vi is the

vector of the ith successive difference, then an unbiased estimator of the variance-covariance
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matrix is

S2 =
1

2(m − 1)

m−1∑

i=1

viv
′

i. (14)

Thus, in our application we have

T 2
2,i,MIX = (β̂i,MIX − βMIX)′S−1

2,MIX(β̂i,MIX − βMIX) for i = 1, 2, . . . ,m, (15)

where

S2,MIX =
1

2(m − 1)

m−1∑

i=1

(β̂i+1,MIX − β̂i,MIX)(β̂i+1,MIX − β̂i,MIX)′. (16)

This statistic is analogous to the use of the moving range to construct an univariate

Shewhart Individuals chart. Sullivan and Woodall (1996) showed that using successive dif-

ferences is effective in detecting sustained step changes in the process that occur in Phase I

data. While the distribution of T 2
2,i,MIX does not have a simple closed form, its asymptotic

distribution is χ2
p. A discussion of the various approximate distributions and the preferred

χ2
p approximation for large samples is given in Williams et al. (2006). However, like T 2

1,i,MIX ,

T 2
2,i,MIXwill not be effective in detecting multiple multivariate outliers (Vargas, 2003).

In the Appendix we show that
∑m

i=1 b̂i = 0 as long as the Zi matrix is contained within

the Xi matrix. This is true even if the Zi and Xi matrices are different from profile to profile.

In addition we show in the Appendix that when the eblups sum to zero, βMIX = β̂MIX .

In addition, we show in the Appendix that the T 2 statistics shown in (11) and (15) can

be expressed as a function of the eblups no matter the form of Xi and Zi. They are given

respectively by

T 2
1,i,MIX = (b̂i − b)′

[∑m

i=1(b̂i − b)′(b̂i − b)

m − 1

]
−1

(b̂i − b) for i = 1, 2, . . . ,m, (17)

and

T 2
2,i,MIX = (b̂i − b)′

[∑m−1
i=1 (b̂i+1 − b̂i)

′(b̂i+1 − b̂i)

2(m − 1)

]
−1

(b̂i − b) for i = 1, 2, . . . ,m. (18)
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These expressions simplify the computation of the T 2 statistics when fitting a LMM to the

data.

A naive approach to compare m linear profiles is to ignore the correlation structure and

the random effects and obtain the model parameters using the LS estimator of the classical

linear model (LM) even though the data follow the model (3). We refer to this naive approach

as the LS approach to distinguish it from the LMM approach. In the LS approach, the fixed

parameters are estimated separately for each profile and are obtained using the expression

in (2).

When taking the LS approach, we have

T 2
1,i,LS = (β̂i,LS − βLS)′S−1

1,LS(β̂i,LS − βLS) for i = 1, 2, . . . ,m, (19)

where

S1,LS =

∑m

i=1(β̂i,LS − βLS)(β̂i,LS − βLS)′

m − 1
, (20)

and where

βLS =

∑m

i=1 β̂i,LS

m
, (21)

and we have

T 2
2,i,LS = (β̂i,LS − βLS)′S−1

1,LS(β̂i,LS − βLS) for i = 1, 2, . . . ,m, (22)

where

S2,LS =
1

2(m − 1)

m∑

i=1

(β̂i,LS − βLS)(β̂i,LS − βLS)′. (23)

The LMM approach has several advantages over the LS approach, some of which were

noted by Verbeke and Mohlenberghs (2000). First, the LMM can be easily fit for balanced

and unbalanced data and is better than the LS approach when the number of observations

per profile is small. The LMM approach combines information from the profiles to achieve
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the model fit with fewer parameters than fitting separate regression models for each profile.

Second, the LMM approach is capable of handling profiles with missing data, even for situ-

ations where the number of observations for a particular profile is less than the number of

parameters that would be needed to fit a regression model to that individual profile.

Simulation Study Setup

We now explain the general procedure for the simulation studies used to compare methods.

Multivariate data that follow a linear mixed model structure are generated where the random

errors follow some specific structure. This is accomplished by generating univariate normal

data and using the Cholesky decomposition to transform the generated univariate data to

multivariate data. The data are fit with a LMM using proc mixed of SASr with the correct

model specification. We included both correlated and uncorrelated errors in our comparisons.

The control limit is established using the appropriate percentiles of the beta or χ2 dis-

tributions so that the probability of signal for the in-control data is .05, the nominal value.

The actual probability of signal is estimated by the proportion of datasets where there was

a signal. That is, a signal occurs when at least one of the m T 2 statistics exceeds the control

limit.

Here we consider the case of simple linear regression with a random slope and intercept

so we have p = 2 and Xi = Zi. For the studies performed, a total of 10, 000 datasets (Monte

Carlo repetitions) were generated for each combination of interest unless otherwise noted.

We can assume without loss of generality that β = [0, 1]. This assumption results from the

regression equivariance property of the estimators in both the classical LM and the LMM,

as discussed in the Appendix.
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Balanced Data

Our initial study is for balanced data situations. Here a commonly used error structure

is an AR(1) model where ρ represents the amount of autocorrelation between successive,

equally spaced observations. We varied n and ρ but held fixed m = 30, σ2
0 = .1, σ2

1 = .1,

and σ2 = .1. Thus D = diag(σ2
0, σ

2
1) represents the variability in the slopes and intercepts

from profile to profile. The statistics T 2
1,i and T 2

2,i are calculated from the LMM approach

(the “right way” in that both the random effects and the correct correlation structure are

accounted for) and the LS approach (the “naive way” where both the random effects and the

correlation structure are ignored). Table 1 shows the proportion of the generated datasets

that had a signal on the control charts for the various T 2 statistics. We also included in

our study the version of the T 2 statistic shown in (9) as proposed by Waternaux, Laird, and

Ware (1989) with V ar(b̂i) instead of V ar(b̂i − bi) because the use of V ar(b̂i − bi) resulted

in extremely large probabilities of signal for in-control data. V ar(b̂i) is given in Laird and

Ware (1982) by

V ar(b̂i) = DZ′

iV
−1
i ZiD − DZ′

iV
−1
i Xi(X

′

iV
−1
i Xi)

−1X′

iV
−1
i ZiD

′, (24)

with D and Vi replaced with their estimated values.

We see here that for the in-control situation, it appears that the more complicated mixed

model analysis makes little difference in terms of a probability of a signal when the data are

balanced and equally spaced. This is true for other values of m, n, and ρ not shown here. We

note that the T 2
2,i,LS and T 2

2,i,MIX statistics give slightly smaller probability of signal than the

nominal .05 level and that the statistics based on the LMM approach have slightly smaller

probabilities than those based on the LS approach. The probability of a signal is very low

for the T 2
varbi,i statistic.
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Table 1: Proportion of datasets with a signal for in-control data for the balanced, equally
spaced data situation.

m n ρ T 2

1,i,LS T 2

1,i,MIX T 2

2,i,LS T 2

2,i,MIX T 2

varbi,i

30 5 0 0.0507 0.0481 0.0464 0.0436 0.0193

30 5 0.1 0.0515 0.0465 0.0468 0.0427 0.0159

30 5 0.5 0.0506 0.0445 0.0438 0.0377 0.0134

30 5 0.9 0.0515 0.0334 0.0450 0.0274 0.0100

30 10 0 0.0524 0.0514 0.0413 0.0407 0.0215

30 10 0.1 0.0526 0.0506 0.0419 0.0426 0.0193

30 10 0.5 0.0496 0.0464 0.0456 0.0410 0.0159

30 10 0.9 0.0495 0.0355 0.0468 0.0317 0.0103

60 5 0 0.0497 0.0491 0.0441 0.0434 0.0298

60 5 0.1 0.0503 0.0495 0.0432 0.0425 0.0278

60 5 0.5 0.0524 0.0471 0.0456 0.0418 0.0263

60 5 0.9 0.0512 0.0342 0.0460 0.0307 0.0177

60 10 0 0.0497 0.0496 0.0450 0.0449 0.0303

60 10 0.1 0.0502 0.0503 0.0458 0.0456 0.0310

60 10 0.5 0.0504 0.0490 0.0451 0.0433 0.0281

60 10 0.9 0.0494 0.0407 0.0411 0.0331 0.0204

90 5 0 0.0492 0.0490 0.0426 0.0425 0.0349

90 5 0.1 0.0501 0.0499 0.0417 0.0403 0.0318

90 5 0.5 0.0518 0.0479 0.0444 0.0429 0.0299

90 5 0.9 0.0489 0.0340 0.0459 0.0310 0.0210

90 10 0 0.0531 0.0531 0.0445 0.0445 0.0374

90 10 0.1 0.0532 0.0527 0.0445 0.0440 0.0372

90 10 0.5 0.0528 0.0510 0.0445 0.0455 0.0345

90 10 0.9 0.0487 0.0415 0.0439 0.0368 0.0261

We performed similar studies with differences in the σ2
0, σ2

1, and σ2 values used to generate

the data in order to investigate their impact. We generated data for all possible combinations

of 2 levels for each of n = (5, 10), σ2
0 = (.1, 1), σ2

1 = (.1, 1), and σ2 = (.1, 1), 3 levels

for m = (30, 60, 90) and 4 levels for ρ = (0, .1, .5, .9). Thus we have expanded the 24

combinations shown in Table 1 to a total of 4 ∗ 3 ∗ 2 ∗ 2 ∗ 2 ∗ 2 = 192 combinations. Rather

than present the full table of results, we summarize the results by showing in Figure 1 the

boxplots of the 5 T 2 statistics. Each boxplot contains all the combinations of m, n, σ2
0,

σ2
1, and σ2 and represents 48 combinations of settings, each of which has 10, 000 generated
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Figure 1: Boxplots of the probability of signal for various combinations of m, n, σ2
0, σ2

1, and
σ2 for the different versions of the T 2 statistic.

datasets.

We note that for the T 2 statistics based on the LS approach, there is little variability in

the probability of signal for different values of m, n, σ2
0, σ2

1, and σ2. There is more variability

in the probability of signal for the T 2 statistics based on the LMM approach and for the

T 2
varbi,i statistic. Thus changing the values of m, n, σ2

0, σ2
1, and σ2 to generate the data

will have little impact on the estimated probability of signal for the LMM approach but no

impact for the LS approach. Even with this variability, the probability of signal is still low,

usually less than .05, but not much less than .05.

We next consider the probability of signal for data that comes from an out-of-control

process. These power studies were performed by introducing step changes in the mean
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vector, β. Because of the small difference in the in-control results we expect only a slight

improvement (if any) in the ability of detecting changes when using linear mixed models for

balanced data. Because the probability of signal is not always .05 for the in-control data,

the power studies were based on simulated control limits to ensure that the probability of

a signal for in-control data will be the same for all the charts and close to the nominal .05

level.

Figure 2: Probability of signal for different values of n and ρ, for the T 2
2,i,LS, T 2

2,i,MIX , and
T 2

varbi,i charts where m = 30, σ2 = .1, σ2
0 = .1 and σ2

1 = .1.

For the m profiles of data, the first l of them are generated from the in-control distribution

with β = [0, 1] and the last m− l are generated from the same distribution and same settings

of the design factors, except that β = [β0, 1]. Thus we have introduced a step change in the

intercept causing the last m − l profiles to be shifted away from the first l profiles.
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Figure 2 shows some of the results of the power studies. Here m = 30, σ2 = .1, σ2
0 = .1

and σ2
1 = .1 where the step change occurred after the fifth profile. We do not show the

results for the charts based on T 2
1,i,LS and T 2

1,i,MIX because it is known that these statistics

will not perform well in detecting step changes (Sullivan and Woodall, 1996; Vargas, 2003).

The curves for T 2
2,i,MIX and T 2

2,i,LS practically coincide, indicating that the two methods

will perform similarly in detecting the step change in the intercept. This is true regardless

of the amount of correlation in the errors or the number of observations per profile. On the

other hand T 2
varbi,i performs poorly, with little ability to signal the shift. This is because the

expression for V ar(b̂i) in (24) is only correct if all the data are in-control and come from the

same distribution. When a step change is present the estimated value of V ar(b̂i) is inflated

reducing the ability to detect that change.

Similar simulation results, not shown here, were obtained when the step change occurred

at some other point, or when the shift occurred in the slope. Thus the conclusions stated

here for the out-of-control data will hold for changes in the slope or intercept, no matter the

value of l.

Similar results were obtained when the data are unequally spaced and are not presented

here. From the simulation study results we conclude that when the data are balanced (equally

or unequally spaced) as will often be the case for control charts applications, there appears

to be no advantage in modeling correlation and/or including random effects.

Unbalanced Data

Because we found little difference using LS and LMM for balanced data, we considered

unbalanced data. This consists of cases where Xi and Zi, although equal to each other for

the same profile, are different from profile to profile. For simplicity, we kept ni = n for all
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Table 2: Proportion of datasets with a signal for in-control data for unbalanced data situa-
tion.

m n ρ T 2

1,i,LS
T 2

1,i,MIX
T 2

2,i,LS
T 2

2,i,MIX
T 2

varbi,i

30 5 0 0.3746 0.0907 0.2635 0.06797 0.0199
30 10 0 0.0672 0.0604 0.0517 0.0467 0.0214
30 15 0 0.0543 0.0551 0.0436 0.0426 0.0203
30 5 0.1 0.1452 0.0712 0.0931 0.0563 0.0166
30 10 0.1 0.0608 0.0556 0.0441 0.0414 0.0142
30 15 0.1 0.0525 0.0542 0.0412 0.0393 0.0163
30 5 0.5 0.0895 0.0590 0.0587 0.0492 0.0202
30 10 0.5 0.0535 0.0511 0.0395 0.0412 0.0176
30 15 0.5 0.0508 0.0517 0.0401 0.0405 0.0206
30 5 0.9 0.0559 0.0505 0.0431 0.0426 0.0208
30 10 0.9 0.0509 0.0498 0.0391 0.0392 0.0190
30 15 0.9 0.0507 0.0511 0.0415 0.0412 0.0211
60 5 0 0.3452 0.0880 0.2772 0.0702 0.0288
60 10 0 0.0912 0.0602 0.0739 0.0507 0.0302
60 15 0 0.0653 0.0596 0.0522 0.0456 0.0292
60 5 0.1 0.2541 0.0764 0.1977 0.0585 0.0236
60 10 0.1 0.0852 0.0595 0.0701 0.0471 0.0254
60 15 0.1 0.0591 0.0545 0.0447 0.0433 0.0286
60 5 0.5 0.1282 0.0641 0.0927 0.0462 0.0262
60 10 0.5 0.0576 0.0504 0.0487 0.0437 0.0298
60 15 0.5 0.0549 0.0559 0.0436 0.0439 0.0307
60 5 0.9 0.0551 0.0514 0.0433 0.0399 0.0303
60 10 0.9 0.0485 0.0488 0.0414 0.0398 0.0306
60 15 0.9 0.0507 0.0536 0.0420 0.0450 0.0294
90 5 0 0.3937 0.1070 0.3524 0.0850 0.0337
90 10 0 0.1119 0.0727 0.0963 0.0598 0.0360
90 15 0 0.0631 0.0594 0.0545 0.0532 0.0359
90 5 0.1 0.2796 0.0799 0.2428 0.0665 0.0295
90 10 0.1 0.0943 0.0642 0.0798 0.0544 0.0350
90 15 0.1 0.0562 0.0516 0.0464 0.0431 0.0270
90 5 0.5 0.1282 0.0647 0.1070 0.0536 0.0316
90 10 0.5 0.0687 0.0583 0.0553 0.0495 0.0378
90 15 0.5 0.0503 0.0468 0.0434 0.0396 0.0305
90 5 0.9 0.0568 0.0525 0.0508 0.0483 0.0366
90 10 0.9 0.0545 0.0550 0.0468 0.0464 0.0363
90 15 0.9 0.0471 0.0466 0.0402 0.0389 0.0322

the profiles. Similar to the balanced data study, we considered different combinations of m,

n, and ρ where σ2 = .1, σ2
0 = .1 and σ2

1 = .1. The setup is the same as for balanced data

but now, the locations along the profile where data are collected were randomly generated

within a fixed interval. Once the locations were generated, they were held fixed for each of

the Monte Carlo repetitions.

Because the unbalanced data are unequally spaced, the AR(1) model is no longer reason-

able because the correlation would be assumed to be equal between successive observations,
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no matter their distance from each other. A more appropriate error structure for unequally

spaced data is an exponential model (Schabenberger and Pierce, 2002) that takes into ac-

count the distance between measurements and still uses ρ. The exponential model is called

the power model in SASr. In the case where the data are equally spaced, the exponential

model reduces to the AR(1) model (Schabenberger and Pierce, 2002).

The T 2
1,i and T 2

2,i values are calculated from LMM and LS approaches and the control

limit is obtained using the appropriate percentiles from the beta or chi-square distributions.

Table 2 shows the proportion of the 10, 000 datasets that had a signal on the control charts

for the various T 2 statistics.

Here we see that in some situations that using the LS approach will result in a much

larger probability of signal than the nominal value. This increased probability occurs when

there is a smaller number of observations per profile (n = 5) and increases as the number of

profiles gets larger. It is also higher when the correlation in the errors is smaller. In contrast,

using the LMM approach keeps the probability of a signal closer to its nominal .05 level.

When the number of observations per profile is larger, there will be little difference between

the LS and LMM approaches.

In contrast with the balanced data scenarios of the previous section, the difference in the

LS and LMM approaches depends on the values of ρ, σ2, σ2
0 and σ2

1. To see this, consider

Figure 3 which shows the probability of signal for various combinations of ρ, σ2, σ2
0 and σ2

1 for

the T 2
2,i statistic obtained via the LS (solid line) and LMM (the dashed line). Here m = 60,

the horizontal axis is n, and there are four larger panels that show various combinations of

ρ and σ2. Within the larger panels are smaller panels which show the combinations of σ2
0

and σ2
1 respectively.

Here we see that the difference between the LS and LMM approaches is more drastic
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Figure 3: Probability of signal for ρ, σ2, σ2
0 and σ2

1 for the T 2
2,i statistic where m = 60. The

solid line represents the probability of signal for the LS approach and the dashed line for the
LMM approach. The smaller panel variables are σ2

0 and σ2
1 respectively.

when the correlation is low, the variability in the errors is high, and n = 5. When n = 10

there will be slight differences in the LS and LMM approaches, at n = 15 there will be no

difference regardless of the level or correlation or the variability in the random effects and

errors. Thus the LMM approach preserves the appropriate Type I error probability of a

signal even for an increased amount of error. Similar conclusions hold for other values of m

and for T 2
1,i,MIX and T 2

2,i,MIX .

In results not shown here, we have repeated multiple times the simulation study for the

unbalanced data scenario with different sets of randomly generated Xi matrices. We found

that the conclusions obtained from Table 2 and Figure 3 still hold with different sets of
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randomly generated locations.

In order to do the power studies for this situation, we simulated the control limits to

ensure that the charts will have the same probability of signal for in-control data. Figure 4

shows some of the results of the power studies for unbalanced data where m = 30, σ2 = .1,

σ2
0 = .1 and σ2

1 = .1 and where the step change occurred after the fifth profile. Again we do

not show the results for the charts based on T 2
1,i,LS and T 2

1,i,MIX .

Figure 4: Probability of signal for n and ρ, for the T 2
2,i,LS, T 2

2,i,MIX , and T 2
varbi,i charts where

the step change in the intercept, β0, occurred after the 5th profile and where m = 30, σ2 = .1,
σ2

0 = .1 and σ2
1 = .1.

We see that just as for in-control data the LMM approach will be superior for smaller

amounts of correlation than for a larger level of correlation of the errors. The larger the

number of observations per profile, the smaller the difference will be between the LMM
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and LS approaches. The T 2
varbi,i chart performs poorly just as it did for the balanced data

scenario.

At first glance this results may seem counterintuitive. The two approaches perform simi-

larly when the correlation in the errors is higher. Intuition suggests that since the LMM is

taking into account the correlation of the errors, it would have higher probabilities of signal

for correlated out-of-control data than the LS approach, which is the opposite of what our

results show.

To explain the contradiction, note that an increased amount of correlation in the errors

makes the profiles smoother and more similar to each other. To illustrate, consider the top

panel of Figure 5 which shows 5 randomly generated profiles from a LMM with no correlation

in the errors. The raw data points are shown along with the simple linear regression fits for

each profile. The profiles each have 5 measurements with the fixed intercept = 0 and the

fixed slope = 1. The random effects of intercept and slope both have variability = .1. Thus

we have β = [0, 1], D =

[
.1 0
0 .1

]
, Xi = Zi =




1 .2
1 .4
1 .6
1 .8
1 1




, and Ri = σ2 I where σ2 = .1.

Notice that the data points appear at random on either side of the fitted profile. This

is because the independent errors are just as likely to cause a point to be above the line

as below the line. Now consider the same previous scenario but now with correlated errors

following an AR(1) structure. Thus

Ri = σ2




1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1




,

where ρ is some number between 0 and 1 and measures the strength of the correlation.
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Figure 5: Randomly generated profile data along with simple linear regression fit with no
correlation and correlation in the errors.

Contrast with the top panel the bottom panel of Figure 5 which shows the profiles with

correlated errors where ρ = .95.

Because of the strong correlation, the errors tend to be similar to each other thus damp-

ening the jagged effect of uncorrelated errors. As a result, the fitted profiles tend to appear

more similar to each other when there is higher amounts of correlation in the errors. This

decreases the frequency of occasions that the profiles are declared different from each other.

As a result, both the LS and LMM approaches give a probability of signal close to the

nominal value when the correlation is high.
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Thus when the data are unbalanced, a mixed model approach will be beneficial, par-

ticularly when the number of observations per profile and the amount of correlation are

small.

Missing Data

The LMM approach has an advantage over the LS approach when there are missing data.

Because the LMM approach pools information together from the profiles, it uses information

from the profiles with full data to fit the profiles that have missing data points. The LMM

approach can even be used to fit a curve to profiles that would not have enough data points

for estimation of its own separate model. For example, profiles with only a single point could

not be used when fitting separate simple linear regressions to each profile. But such profiles

could be used in the LMM approach. While we do not advocate making a decision about

whether or not a profile is outlying based on a single point, we do want to investigate the

impact of missing data on the LMM and LS approaches.

We did a simulation study to evaluate the impact of missing data assumed to be missing

at random (MAR). While this may be a simplistic assumption, it will serve here to illus-

trate the differences in the LMM and LS approaches. If the missing data are due to some

underlying phenomena, for example, due to dropout in a longitudinal study then the MAR

assumption will not be met. More information on the different types of missing data can be

found in Verbeke and Molenberghs (2000, Chapters 14-16) and in Little and Rubin (1987).

Likelihood based inference is still valid when the data are MAR so no changes are needed in

the SAS coding (Vonesh and Chinchilli, 1997, 264). Studying the impact of missing data in

profile monitoring requires consideration of both the proportion of profiles that have missing

observations, referred to here as %m, and the proportion of observations missing within the

profiles, referred to here as %n. For example, if m = 30, n = 5, %m = .2, and %n = .4,
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Figure 6: Probability of signal for T 2
1,i,LS and T 2

1,i,MIX when data are missing at random from
the in-control profiles.

there will be 6 profiles that have missing observations and for those 6 profiles, there will be

two observations missing for each profile.

We considered the balanced equally spaced data scenario where the data were first gen-

erated, then a subset of profiles was selected at random, and then the missing observations

were selected at random locations for the subset of profiles. The missing observations occur

at different points for the profiles. We show here the results for σ2
0 = .1, σ2

1 = .1, and σ2 = .1

with the control limit obtained from the corresponding beta and chi-square distributions.

We considered several values of ρ for the correlation in the errors and also included the case

where ρ = 0, that is, there is no correlation in the errors. We examined two levels of %m

and %n, which were .2 and .4.
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Figure 7: Probability of signal for T 2
2,i,LS and T 2

2,i,MIX when data are missing at random from
the in-control profiles.

The probability of signal is shown in Figures 6 and 7 for data that comes from an in-

control process. We see from the figures that in some cases the T 2 statistics based on the LS

approach have a higher probability of signal than the nominal .05 level. The LS approach

performs poorly when n = 5 and %n is larger. The larger the number of observations per

profile then the less drastic will be the impact of missing data. A change in %m only results in

small differences between the LMM and LS approaches. As the number of profiles increases

the probability of a signal (frequency of a false alarm) increases.

As we did for other data scenarios, we considered the performance for out-of-control data.

As before, we introduce a step change in the intercept and compare the probability of a signal

for T 2
2,i,LS and T 2

2,i,MIX because of their ability to detect step changes. Figure 8 shows the
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probability of a signal where m = 60, σ2
0 = .1, σ2

1 = .1, and σ2 = .1 for different combinations

of ρ, n, %m and %n.

Figure 8: Probability of signal for n and ρ where data are missing at random, for the T 2
2,i,LS

and T 2
2,i,MIX charts where m = 60, σ2

0 = .1, σ2
1 = .1, and σ2 = .1.

Just as we saw for the in-control data, the biggest difference between the LMM and LS

approaches for MAR data occurs when the correlation in the errors is low, the number of

observations is small, and when the proportion of missing data is larger. Earlier we noted that

for unbalanced data that the difference between the LMM and LS approaches is more drastic

when there is an increasing amount of variability in the errors. This is true here. While not

shown in Figure 8, when σ2 increases, the LMM approach will increases its superiority over

the LS approach.
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Example

To illustrate the control chart procedure discussed here we use the calibration dataset

first analyzed in Mestek, Pavlik, and Suchánek (1994) and later analyzed in Mahmoud

and Woodall (2004). The data consist of 22 calibration curves each of which relates an

absorbance measure of a chemical solution to the volume at which the solution was prepared.

The purpose is to determine if the calibration curves are stable over time. There are 5

volumes and 2 replicate measurements for each volume so each profile has a total of 10

measurements. The raw data profiles of the calibration data are shown in Figure 9. We

see that the calibration curves are very similar to each other with more variability in the

intercepts than in the slopes. These data are balanced, equally spaced, and have no missing

observations.

Figure 9: The raw data profiles for the calibration dataset.

We first investigate to see if the measurements within a profile are correlated across

the different volumes. To determine the appropriate correlation structure we employed the
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graphical methods discussed in Dawson, Gennings, and Carter (1997). After centering and

scaling the data by volume we obtained the draftman’s display shown in Figure 10.

Figure 10: Draftman’s display of the calibration data showing a compound symmetry cor-
relation structure.

Based on the examples shown in Dawson, Gennings, and Carter (1997), we conclude that

the calibration dataset has a compound symmetry (CS) structure. This is evident from the

positive linear trend in the individual scatterplots on the draftman’s display of Figure 10.

The strength of the trend is consistent for the plots closest to the diagonal and for the plots

in the upper right hand corner. If the strength of the trend were to weaken or decrease for

the plots further away from the diagonal, then we would have concluded that the calibration

dataset had errors that followed a AR structure.

We then fit the profiles with the LS and LMM approaches. Figure 11 shows the T 2 charts

for the LS approach. Figure 12 shows the T 2 charts for the LMM approach. When fitting
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Figure 11: T 2 charts for the profiles of the calibration dataset that have been fit by the LS
approach.

Figure 12: T 2 charts for the profiles of the calibration dataset that have been fit by the LMM
approach.

the LMM, we found that the only necessary random effect was that for the intercept. A

likelihood ratio test of a random effect on the slope leads us to conclude that a random effect

is not needed for the slope because the slopes are so similar to each other. In addition, once

the random effect for intercept is included, the estimated errors are no longer correlated with

each other, thus we can safely analyze the data with independent errors.

We see that for this dataset, the LS and LMM approaches give the same result. There

are no signals on either control charts suggesting that the 22 calibration curves come from

an in-control process. All of them can be used to set the control limits for Phase II. We did
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not expect to have any drastic differences in the LS and LMM approaches because of the

results of our simulation studies showed that there is little difference for balanced, equally

spaced data as we have here for the calibration data.

Our conclusions here agree with the results of Staudhammer et al. (2005) who studied the

modeling of profiles in lumber manufacturing. They modeled the autocorrelated errors with

time series models and concluded that for SPC applications, ignoring the autocorrelation does

not make much difference. This is true even though their profiles are rather complicated and

there is an obvious autocorrelation in the data. The number of observations that they have

per profile is much larger than the sample sizes considered here (n > 2000).

Open Questions

In our simulation studies and comparisons we restricted the investigation to certain types

of situations and data scenarios. There is a large number of variations that could be consid-

ered for the simulations shown here. We discuss briefly some of these variations here.

We have not considered the situation where the data are correlated with no random

effects where yi ∼ MN(Xiβ,Ri) and Ri follows some structure. Nor have we considered

models where not all the coefficients are random, where the Zi matrix is a subset of the Xi

matrix. We believe that our conclusions obtained here will be similar to those that would

hold where not all of the effects are random. We have not considered the many other error

structures that could be utilized that depend on a small number of parameters, for example,

the CS structure. We believe that regardless of the error structure used, the conclusions

obtained here would still hold. The power studies on the out-of-control performance of the

T 2 statistic have been performed for step changes in the mean vector where the T 2
2,i statistic

is superior. We have not considered power studies for outliers (at the profile level and within
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the profile level). It seems clear that the high breakdown estimation methods discussed in

Vargas (2003) and Jensen, Birch, and Woodall (2006) will be of benefit for this situation.

Our studies on missing data assume that data are missing at random. However, for repeated

measures data, it is sometimes reasonable to presume that the missing observations depend

on a variable that is not observed. For example, if the profiles were to represent human

subjects who are measured at repeated time intervals, dropout can occur because subjects

are not longer interested in participating. In some cases, the dropout can be the result of an

ineffective treatment and the missing observations no longer occurs at random. It is much

more difficult to model data that with values that are not missing at random.

Conclusions

To summarize the results, we have found that in all the Phase I scenarios investigated,

the LMM approach has either equivalent or superior performance when compared to the LS

approach. When the data are balanced, there is little difference between the two approaches

but we have found using simulation that the advantage of the LMM over the LS approach

is greatest when the data are unbalanced or when there are missing observations. For

unbalanced or missing data, the LMM is better for smaller levels of correlation and for a

smaller number of observations per profile.
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Appendix

Theorem A.1. The sum of the random deviations from the linear mixed model, b̂i, is equal

to the zero vector when Xi = Zi, for i = 1, 2, . . . ,m.

Proof. We first set Xi = Zi and noting that we can interchange between the model for-

mulation in terms of the individual profiles and a model formulation using stacked ma-

trices. For example, we have
∑m

i=1 X′

iViXi = X′V−1X and
∑m

i=1 X′

iViyi = X′V−1y

where X is a (
∑m

i=1 ni) by p stacked matrix of the X′

is, V = ZBZ′ + R = diag(Vi) with

B = diag(D),R = diag(Ri), and Z is a block diagonal matrix containing all the Zi matrices.

Then using (6) and (7) with the estimated values in place of the known values and doing

some manipulation gives

m∑

i=1

b̂i =
m∑

i=1

[
DZ′

iV
−1
i

(
yi − Xiβ̂MIX

)]

=
m∑

i=1

DX′

iV
−1
i yi −

m∑

i=1

DXiV
−1
i Xi (X

′VX)
−1

X′V−1y

= DX′V−1y − D
(
X′V−1X

)
(X′VX)

−1
X′V−1y

= DX′V−1y − DX′V−1y

= 0. (25)

Notice that this proof does not require that Xi be the same for each profile. Nor does it

require that the profiles have the same number of measurements (i.e. ni does not have to

be the same for all the profiles). As a result it is obvious that the average of the random

deviations is zero

b =

∑m

i=1 b̂i

m
= 0, (26)
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and that

βMIX =

∑m

i=1 β̂i,MIX

m
=

∑m

i=1(β̂MIX + b̂i)

m
=

∑m

i=1 β̂MIX

m
=

mβ̂MIX

m
= β̂MIX . (27)

In Theorem A.2, we extend the results of Theorem A.1 to the case where the Zi matrix

is not equivalent to the Xi matrix but that the columns of Zi are contained in Xi, thus Xi

may also have some additional columns not contained in Zi.

Theorem A.2. The sum of the random deviations from the mixed model, b̂i, is equal to the

zero vector when the Zi matrix is contained within the Xi matrix.

Proof. We set the partitioned matrix Xi = [X1,i|X2,i] = [Zi|X2,i] where Zi = X1,i and then

using (6) and (7) with the estimated values in place of the known values and doing some

manipulation gives

m∑

i=1

b̂i =
m∑

i=1

[
DZ′

iV
−1
i

(
yi − Xiβ̂MIX

)]

= D

[
m∑

i=1

Z′

iV
−1
i yi −

m∑

i=1

Z′

iV
−1
i [X1,i|X2,i] β̂MIX

]

= D

[
m∑

i=1

X′

1,iV
−1
i yi −

m∑

i=1

X′

1,iV
−1
i [X1,i|X2,i] β̂MIX

]

= D

[
m∑

i=1

X′

1,iV
−1
i yi −

m∑

i=1

[
X′

1,iV
−1
i X2,i|X

′

1,iV
−1
i X2,i

]
β̂MIX

]

= D
[
X′

1V
−1y −

[
X′

1V
−1X1|X

′

1V
−1X2

]
(X′VX)

−1
X′V−1y

]
, (28)

where X1 and X2 are stacked matrices of X1,i and X2,i respectively.

We now turn attention to the partitioned matrix in the right hand side of the expression
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and show that

(X′VX)
−1

= A−1

=




A11 A12

A21 A22




−1

=




X′

1V
−1X1 X′

1V
−1X2

X′

2V
−1X1 X′

2V
−1X2




−1

. (29)

Then using a common result (2.50 of Rencher, 2000) to take the inverse of the partitioned

matrix we have

A−1 =




A−1
11 + A−1

11 A12B
−1A21A

−1
11 −A−1

11 A12B
−1

−B−1A21A
−1
11 B−1




=

[
(
X

′

1
V

−1
X1

)
−1

+
(
X

′

1
V

−1
X1

)
−1

X
′

1
V

−1
X2B

−1
X

′

2
V

−1
X1

(
X

′

1
V

−1
X1

)
−1

−

(
X

′

1
V

−1
X1

)
−1

X
′

1
V

−1
X2B

−1

−B−1X′

2
V−1X1

(
X′

1
V−1X1

)
−1

B−1

]
,

where B = A22 − A21A
−1
11 A12 = (X′

2V
−1X2) − X′

2V
−1X1(X

′

1V
−1X1)

−1X′

1V
−1X2 has an

inverse. This inverse of the partitioned matrix also requires the existence of inverses of A11

and A22. These inverses exist because A has an inverse and by Theorem 2.6F of Rencher

(2000) which says the square submatrices of a partitioned matrix have inverses if the whole

matrix itself has an inverse. Thus the right hand side of (28) can be written as

[
X′

1V
−1X1|X

′

1V
−1X2

]
(X′VX)

−1
X′V−1y =

[
I + X

′

1
V

−1
X2B

−1
X

′

2
V

−1
X1

(
X

′

1
V

−1
X1

)
−1

−X
′

1
V

−1
X2B

−1

−

(
X

′

1
V

−1
X2

)
B

−1
X

′

2
V

−1
X1

(
X

′

1
V

−1
X1

)
−1

(
X

′

1
V

−1
X2

)
B

−1

]


X′

1V
−1y

X′

2V
−1y


. (30)

Now multiplying this last result of (30) into the earlier expression for the blups in (28) gives
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us

m∑

i=1

b̂i = D
[
X′

1V
−1y −

[
X′

1V
−1X1|X

′

1V
−1X2

]
(X′VX)

−1
X′V−1y

]

= DX′

1V
−1y − DX′

1V
−1y + DX′

1V
−1X2B

−1X′

2V
−1X1

(
X′

1V
−1X1

)
−1

X′

1V
−1y

−DX′

1V
−1X2B

−1X′

2V
−1y − DX′

1V
−1X2B

−1X′

2V
−1X1

(
X′

1V
−1X1

)
−1

X′

1V
−1y

+DX′

1V
−1X2B

−1X′

2V
−1y

= DX′

1V
−1y − DX′

1V
−1y

= 0.

Thus the eblups sum to zero for balanced and unbalanced data and/or whether or not Xi is

the same for each profile as long as Zi is equal to or contained within Xi.

Theorem A.3. If
∑m

i=1 b̂i = 0, then the T 2
1,i,MIX and T 2

2,i,MIX statistics in (11) and (15)

depend only on the b̂i, the random components.

Proof. Starting with (11) and using the results from (21) we have

T 2
1,i,MIX = (β̂i,MIX − βMIX)′S−1

1,MIX(β̂i,MIX − βMIX) for i = 1, 2, . . . ,m

=
[
(β̂MIX + b̂i) − (β̂MIX)

]
′

[∑m

i=1[(β̂MIX + b̂i) − β̂MIX ][(β̂MIX + b̂i) − β̂MIX ]′

m − 1

]
−1

[
(β̂MIX + b̂i) − (β̂MIX)

]
(because β̂MIX = βMIX)

= b̂′

i

(∑m

i=1 b̂ib̂
′

i

m − 1

)
−1

b̂i for i = 1, 2, . . . ,m. (31)
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Starting with (15) we have

T 2
2,i,MIX = (β̂i,MIX − βMIX)′S−1

2,MIX(β̂i,MIX − βMIX) for i = 1, 2, . . . ,m

=
[
(β̂MIX + b̂i) − (β̂MIX)

]
′

[∑m

i=1[(β̂MIX + b̂i+1) − (β̂MIX + b̂i)][(β̂MIX + b̂i+1) − (β̂MIX + b̂i)]
′

2(m − 1)

]
−1

[
(β̂MIX + b̂i) − (β̂MIX)

]

= b̂′

i

[∑m

i=1(b̂i+1 − b̂i)(b̂i+1 − b̂i)
′

2(m − 1)

]
−1

b̂i for i = 1, 2, . . . ,m. (32)

Theorem A.4. The T 2
1,i,MIX and T 2

2,i,MIX statistics in (11) and (15) depend only on the

eblups, b̂i, and their average, b, no matter the value of Zi and Xi .

Proof. In the most general situation, we have 3 components that make up the T 2
1,i,MIX

and T 2
2,i,MIX statistics. The first component consisting of both random and fixed effects,

comprises the columns of Zi and Xi that are equal to each other, the second component

consisting of only fixed effects, comprises the columns in Xi that are not in Zi, and the third

component consisting of only random effects, comprises the columns in Zi that are not in

Xi.

We note that once β̂MIX and b̂i are obtained in the most general situation that we can par-

tition β̂i,MIX into the 3 components. Thus we have β̂i,MIX = β̂MIX+b̂i =




β̂MIX,1 + b̂i,1

b̂i,2

β̂MIX,2




where β̂MIX,1 and b̂i,1 are ax1 vectors corresponding to the columns in Xi and Zi that are

equivalent, b̂i,2 is the cx1 vector corresponding to the columns in Zi that are not in Xi, and

β̂MIX,2 is a bx1 vector corresponding to the columns in Xi that are not in Zi. Thus Xi is a
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ni by (a + b) matrix and Zi is a ni by (a + c) matrix. We also have

βi,MIX =

∑m

i=1 β̂i,MIX

m

=




β̂MIX,1 +
∑m

i=1
b̂i,1

m
∑m

i=1
b̂i,2

m

β̂MIX,2




=




β̂MIX,1 + bi,1

bi,2

β̂MIX,2




for i = 1, 2, . . . ,m, (33)

and

β̂i,MIX − βi,MIX =

[
b̂i,1 + bi,1

b̂i,2 − bi,2

]
=

[
b̂i − b

0

]
for i = 1, 2, . . . ,m. (34)

The resulting T 2
1,i,MIX statistics is then given by

T 2
1,i,MIX = (β̂i,MIX − βi,MIX)′S−1

1,MIX(β̂i,MIX − βi,MIX) for i = 1, 2, . . . ,m

=
[

(b̂i − b)′ 0
]

∑m

i=1

[
(b̂i − b)′ 0

] [
b̂i − b

0

]

m − 1

[
b̂i − b

0

]

=
[

(b̂i − b)′ 0
]



∑m
i=1

(b̂i−b)′(b̂i−b)

m−1
0

0 0




−1 [
b̂i − b

0

]
. (35)

The previous expression contains a nonsingular matrix because of the column of zeroes.

However, because the matrix is block diagonal, it is a simple matter to calculate the gener-

alized inverse by simply taking the inverse of the non-zero portion of the matrix. We can

then rewrite the above expression as as

T 2
1,i,MIX =

[
(b̂i − b)′ 0

]



(∑m
i=1

(b̂i−b)′(b̂i−b)

m−1

)
−1

0

0 0




[
b̂i − b

0

]

= (b̂i − b)′

[∑m

i=1(b̂i − b)′(b̂i − b)

m − 1

]
−1

(b̂i − b) for i = 1, 2, . . . ,m. (36)
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By similar arguments we can show that

β̂i+1,MIX − β̂i,MIX =




b̂i+1 − b̂i

0


 , (37)

and

T 2
2,i,MIX = (b̂i − b)′

[∑m−1
i=1 (b̂i+1 − b̂i)

′(b̂i+1 − b̂i)

2(m − 1)

]
−1

(b̂i − b)for i = 1, 2, . . . ,m, (38)

which is similar to the same result obtained for T 2
2,i,MIX in Theorem A.3.

The results of Theorem A.3 and A.4 imply that for a given set of data, we only need to

consider the random components when calculating the T 2
1,i,MIX and T 2

2,i,MIX statistics. This

simplifies the calculations needed to determine the properties of multivariate control charts.

Theorem A.5. The estimator of fixed effects and the predictor of the random effects in the

LMM are regression equivariant.

Proof. Following the convention of Rousseeuw and Leroy (1987), an estimator, T is regression

equivariant, if for the response vector, yi, the regressors, xi, and an arbitrary vector, v,

T (xi;yi + x′

iv) = T (xi;yi) + v ∀i. (39)

Regression equivariance is important because it allows us to arbitrarily pick parameter

values to generate yi for simulation studies without loss of generality. For example in a

simple linear regression model, the least squares estimators are regression equivariant, which

would allow us to pick an arbitrary slope and intercept for simulation studies, and still obtain

the same conclusions from the study.
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We show here the regression equivariance of the estimator of fixed effects and of the

predictor of random effects for the linear mixed model. We use the stacked matrices of

Theorem A.1 for the the estimator of the fixed effects and the predictor of random effects.

Suppose the response vector y was changed by some arbitrary amount that is a function

of the regressors, X. The resulting response vector is given by ỹ = y + Xv where v is some

arbitrary px1 vector.

Then the resulting estimator of the fixed effects is given by

β̃ = (X′V−1X)XV−1(y + Xv)

= X′V−1X)XV−1y + X′V−1X)XV−1Xv

= β + v (40)

As a result of the definition in (39) the estimator of the fixed effects is regression equivariant.

Now consider the predictor of the random effects. If the response vector is changed by

some arbitrary amount so that we have ỹ then we can show that the resulting predictor of

random effects is given by

b̃ = BZ′V−1(ỹ − Xβ̃)

= BZ′V−1(y + Xv − X(β + v))

= BZ′V−1(y − Xβ)

= b̂ (41)

Thus the predicted random effects are unchanged when the response vector has been

changed by some arbitrary amount.
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Mestek, O., Pavlik, J. and Suchánek, M. (1994). “Multivariate Control Charts: Control

Charts for Calibration Curves” Fresenius’ Journal of Analytical Chemistry 350, pp. 344-

351.

Rencher, A.C. (2000). Linear Models in Statistics. John Wiley and Sons, New York, NY.

Ritz, C. (2004). “Goodness-of-fit Tests for Mixed Models”. Scandinavian Journal of Statis-

tics 31, pp. 443-458.

Schabenberger, O. and Pierce, F.J. (2002). Contemporary Statistical Models for the Plant

and Soil Sciences. CRC Press, Boca Raton, Florida.

Staudhammer, C.L., Lemay, V.M., Kozak, R.A, and Maness, T.C. (2005). “Mixed-Model

Development for Real-Time Statistical Process Control Data in Wood Products Manu-

facturing”. Forest Biometry, Modelling and Information Sciences 1, pp. 19-35.

Sullivan, J.H. and Woodall, W.H. (1996). “A Comparison of Multivariate Control Charts

for Individual Observations”. Journal of Quality Technology 28, pp. 398-408.

Tan, F.E.S., Ouwens, J.N. and Berger, M.P.F. (2001). “Detection of Influential Observations

in Longitudinal Mixed Effects Regression Models”. The Statistician 50, pp. 271-284.

44



Vargas, J.A. (2003). “Robust Estimation in Multivariate Control Charts for Individual

Observations”. Journal of Quality Technology 35, pp. 367-376.

Verbeke, G. and Lessafre, E. (1996). “A Linear Mixed-Effects Model with Heterogeneity in

the Random-Effects Population”. Journal of the American Statistical Association 91,

pp. 217-221,

Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data.

Springer-Verlag, New York, NY.

Vonesh, E.F. and Chinchilli, V.M. (1997). Linear and Nonlinear Models for the Analysis of

Repeated Measurements. Marcel Dekker, New York, NY.

Wang, K. and Tsung, F. (2005). “Using Profile Monitoring Techniques for a Data-Rich

Environment with Huge Sample Sizes”. Quality and Reliability Engineering International

21, pp. 677-688.

Waternaux, C., Laird, N.M., and Ware, J.H. (1989). “Methods for Analysis of Longitu-

dinal Data: Blood-Lead Concentrations and Cognitive Development”. Journal of the

American Statistical Association 84, pp. 33-41.

Williams, J.D., Woodall, W.H., Birch, J.B., and Sullivan, J.H. (2006). “On the Distribu-

tion of T 2 Statistics Based on Successive Differences”. to appear in Journal of Quality

Technology.

Woodall, W.H., Spitzner, D.J., Montgomery, D.C., and Gupta, S. (2004). “Using Control

Charts to Monitor Process and Product Quality Profiles”. Journal of Quality Technology

36, pp. 309-320.

Xu, R. (2003). “Measuring Explained Variation in Linear Mixed Effects Models”. Statistics

in Medicine 22, pp. 3527-3541.

45


