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Abstract

In pharmaceutical drug discovery and agricultural crop product discovery, in vivo bioas-
say experiments are used to identify promising compounds for further research. The repro-
ducibility and accuracy of the bioassay is crucial to be able to correctly distinguish between
active and inactive compounds. In the case of agricultural product discovery, a replicated
dose-response of commercial crop protection products is assayed and used to monitor test
quality. The activity of these compounds on the test organisms, the weeds, insects, or
fungi, is characterized by a dose-response curve measured from the bioassay. These curves
are used to monitor the quality of the bioassays. If undesirable conditions in the bioas-
say arise, such as equipment failure or problems with the test organisms, then a bioassay
monitoring procedure is needed to quickly detect such issues. In this paper we illustrate a
proposed nonlinear profile monitoring method to monitor the variability of multiple assays,
the adequacy of the dose-response model chosen, and the estimated dose-response curves
for aberrant cases in the presence of heteroscedasticity. We illustrate these methods with
in vivo bioassay data collected over one year from DuPont Crop Protection.
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1 Introduction

High throughput screening (HTS) is a common experimental method by which chemical

compounds are tested for biological activity (i.e., growth inhibition, growth stimulation,

etc.) to test organisms, such as weeds, insects, and fungi (see Delvin (1997) and Janzen

(2002)). Agricultural product and pharmaceutical companies frequently use HTS in the

discovery phase of chemical and drug development as an efficient method to sift through

several thousands of compounds in a short period of time. Paramount to the effectiveness

of the HTS is the quality of the testing system in place to identify promising compounds. A

testing procedure commonly used is a bioassay. Finney (1971, p. 2) described the usefulness

of a bioassay in the following way. “Biological assay is a set of techniques relevant to . . . the

measurement of the potency of any stimulus, physical, chemical or biological, . . . by means

of the reactions that it produces in living matter. . . . Even if the chemical constitution of

the material has been determined, there may be little knowledge of the magnitude of the

effect which the constituents will produce.” Once a compound is identified as being active

on a particular test organism, then further in-depth research can be launched to measure

its potency, toxicity, and potential environmental risks. However, if a “truly inactive”

compound is identified as being active in the HTS and is thereafter advanced to follow-up

studies, then valuable time and resources are wasted. This case is referred to as a false

positive. On the other hand, if a “truly active” compound is not identified in the HTS,

then it will be dropped from the potential list of candidate compounds, and there is a

potentially large cost for ignoring this promising compound. This case is referred to as a

false negative. The quality of the bioassay in terms of its accuracy and reproducibility is a

significant indicator of the ability of the screen to detect active compounds and eliminate

inactive compounds. One expects that the natural variability of the bioassay will cause

some false positives and false negatives. However, a high-quality bioassay screen is one that

simultaneously minimizes both false positives and false negatives.

Because biological systems have inherent variability, a monitoring procedure of the

bioassay is needed to ensure that its quality is maintained. Many factors can influence
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the effectiveness of the bioassay, such as pipette accuracy, the health of the test organism

being assayed, the growth media, the growth chamber, as well as the measuring device that

determines activity. For example, if the test organism becomes weakened, then more test

compounds may falsely appear to be active, which may result in increased false positives.

On the other hand, if the pipette dispenses too little compound into the microtiter plate,

then a “truly active” compound may not be detected, resulting in increased false negatives.

When establishing a control procedure of a product or process, such as a bioassay, a

historical dataset (HDS) is required. The HDS consists of data collected from the HTS for

a substantial period of time. However, the HDS might contain aberrant bioassay response

measurements due to undesirable conditions such as equipment failure or test organism prob-

lems. It is desired to remove such out-of-control data from the HDS so that the remaining

in-control data can be used to estimate the common-cause variability in the bioassay. Once

the in-control process parameters have been estimated, then these estimates can be used in

continuous bioassay monitoring. In the case of HTS, an out-of-control signal could indicate

that that the bioassay may be unreliable for that sampling period. At that point, further

investigation can determine the cause of the out-of-control condition.

Our application is an example of quality profile monitoring, a relatively new area re-

viewed by Woodall, et al. (2004). The fitted dose-response curves are referred to as profiles.

Most of this research thus far has been on linear profiles with a constant variance for the

error term. Williams, Woodall, and Birch (2003) proposed nonlinear profile monitoring

methodology for the constant variance case, with applications to monitoring the vertical

density profile of particle boards manufactured in the forest products industry. In this paper

we extend the methodology to the nonlinear profile case with a nonconstant variance. For

information on the monitoring of linear profiles, see Kim, et al. (2003) and Mahmoud and

Woodall (2004).
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2 Bioassay Protocol

One method of determining bioassay quality is to estimate the response of the test organisms

in the bioassay to established chemical compounds. For example, in agricultural product

development, this is done by employing commercial crop protection products with known

properties, hereafter called standards. It is assumed that the commercial compounds are

consistent over time. If the activity of a commercial compound is determined to be different

from what is expected for the test organism, then the bioassay may be unreliable for that

sampling period and is subject to further investigation.

To illustrate our proposed methods we will use an HDS of one year of in vivo bioassay

results for commercial crop protection products from DuPont Crop Protection. The bioas-

say protocol that generated this HDS follows a simple four-step procedure. The procedure

was the same for both standards and experimental compounds, except that more rates and

replicates were used for the standards. However, because the quality of the bioassay is de-

termined using the standards with known properties, we limit the discussion to use of these.

In the first step, specified amounts of the test organisms and growth media are pipetted

into 96-well microtiter plates of eight rows and twelve columns. Second, the standards are

diluted into eight specified doses and pipetted into the microtiter plates, whereupon lids

are attached to seal the plates. Four replications per dose of the commercial compound are

employed. Third, the plates are stored in a growth chamber for a specified period of time.

Fourth, the lids are removed and the response is measured. A spectrophotometer measures

the optical density of the remaining test organisms in each well of the microtiter plate. The

lower the optical density value, the more activity the compound had on the test organisms.

This bioassay of commercial standards is run alongside experimental compounds to assess

quality. The DuPont HDS consists of forty-four weekly bioassay tests taken over a one year

time period.

We use yijk to represent the kth response to the jth dose at sampling period i, where

i = 1, . . . , m, j = 1, . . . , d, and k = 1, . . . , r. For the DuPont HDS, we have m = 44,

d = 8, and r = 4. We cover the profile monitoring methodology based on a balanced HDS

3



with equal number of replicates per dose and the same dose specifications for all sampling

periods. However, because of missing data due to laboratory errors or other reasons, a HDS

may not be balanced. The methodology presented here can be extended to the unbalanced

case.

Bioassay units with no compound at all are also run alongside experimental compounds

as a negative control. These are called untreated cases. Optical density readings are taken

for these untreated cases to assess the amount of test organisms present at the end of the

growth period. The median response of these untreated wells serves as a baseline for the

percent control calculations of each experimental unit. We let Mi represent the median

response of the untreated specimen at sampling period i. Then, the percent control (PC)

of the chemical for the kth replication of the jth dose in sampling period i is calculated as

PCijk =
Mi − yijk

Mi
. (1)

A plot of PCijk values for all m = 44 weeks for one of the standards from the DuPont HDS

is given in Figure 1.

(Insert Figure 1 about here)

A dose-response curve must be estimated for each sampling period i using the PCijk

values. Each rate of a standard compound is used as a consistent, reproducible stimulus to

detect any variations in the entire bioassay process. When the doses or rates of a standard

are summarized together in a dose-response curve, this is a sensitive detector of variations in

the bioassay process. For example, if at a sampling period the dose-response curve is quite

different than expected, then there is reason to believe that an out-of-control condition has

occurred.

The following profile monitoring methodology is divided into two steps: (1) purging

the HDS of out-of-control profiles and (2) continuous process monitoring. In the first step,

we are concerned with distinguishing between in-control conditions and the presence of

assignable causes in the HDS so that in-control model parameters may be estimated for

further product or process monitoring in the second step. If out-of-control observations
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are included in the estimation of in-control parameters in step one, then the subsequent

monitoring procedure will be less effective. Therefore it is imperative that outliers be

removed from the HDS and any shifts in the mean response function be identified, so that

in-control parameters may be estimated to reflect what would be expected from a stable

process. In Sections 3 and 4 we present methods for purging the HDS of out-of-control

observations and methods of continuous process monitoring, respectively.

3 Purging the HDS

3.1 Dose-Response Model

For any given chemical compound and test organism, an appropriate dose-response model

must be chosen. Subject-matter theory and practical experience often lead to an appropriate

model. An ideal model is one that adequately describes the mean response as a function of

dose and has parameters with meaningful interpretations.

The shape of the quality profiles can be either linear or nonlinear. Quite often a nonlinear

model is needed to adequately describe the relationship between dose and the response in a

bioassay. The general form of the nonlinear model used to monitor the response in profile

i is

yijk = f(xijk,βi) + εijk, i = 1, . . . , m; j = 1, . . . , d; k = 1, . . . , r (2)

where yijk is the kth response from dose xijk, εijk is the random error, βi is a p× 1 vector

of parameters for profile i, and f is nonlinear in the parameters. The random errors εijk

are assumed to be independent normal random variables with mean zero and variance σ2
ij .

Note that the variance of the response is allowed to depend on the dose. Quite often in

biological experiments, the variability of the response generally decreases with increasing

dose due to the decrease of biological activity. The specific form of σ2
ij will be modeled in

Section 3.2.

A common model used in bioassay experiments to characterize dose-response profiles is
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the 4-parameter logistic model, given by

yijk = Ai +
Di −Ai

1 +
(

xijk

Ci

)Bi
+ εijk

where Ai is the maximal response parameter, Di is the minimal response parameter, Ci is the

ED50 parameter (the dose required to elicit 50% response), and Bi is the rate parameter

which determines how quickly the response changes from the minimum response to the

maximum response (see Ratkowsky (1989) and Schabenberger and Pierce (2002)). When

the value of Bi is positive, then the response increases as xijk increases. When Bi is

negative, the response decreases as xijk increases. We write the vector of parameters in the

dose-response model as βi = (Ai, Bi, Ci, Di)′.

3.2 Variance Profile

After the specified dose-response model is chosen to model the mean response, we turn

our attention to characterizing the variance of the response as a function of dose. There

is a large body of literature on variance function modeling. For a thorough treatment of

variance function estimation, see Davidian and Carroll (1987), Carroll and Rupert (1988),

and Arbogast and Bedrick (2004). Davidian and Carroll (1987) wrote the general variance

function model as

Var(yijk) = σ2
ij = σ2

i g(zij , βi, θi),

where in our case σ2
i is a scale parameter for profile i and g(·) is some function of regressor

variables zij , the parameter vector βi from Equation (2), and other parameters θi. The

variance predictor variables zij can be the dose variable, but not necessarily so. The form

of g(·) will depend on the specific application.

When there are replications at every dose j, then an unbiased estimator of σ2
ij can be

obtained. The estimator is

σ̂2
ij = S2

ij =
1

r − 1

r∑

k=1

(yijk − ȳij.)2. (3)
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If we make the assumption that yijk, k = 1, . . . , r, are i.i.d. normal random variables (i.e.,

the r replications within a given dose are independent), then

(r − 1)S2
ij

σ2
ij

∼ χ2(r − 1). (4)

One might be tempted to use 1/S2
ij as the estimated weights in the subsequent estimation

of β. However, it is well-known that this “connect-the-dots” variance model for small

number of replications is hazardous, especially where r is small (see Deaton, Reynolds, and

Myers (1983), Davidian and Carroll (1987), and Carroll and Rupert (1988)). Instead, a

“smoothed” variance function is preferred.

A useful variance model proposed by Bellio, Jensen, and Seiden (2000) is the so-called

“power of x” (POX) model, given by

σ2
ij = σ2

i g(zij ,βi, θi) = a0,ix
θ1,i

ij . (5)

Then, as suggested by Aitkin (1987), using the distributional result of Equation (4) we may

model S2
ij using a generalized linear model (GLIM) framework with the natural logarithm

link function and gamma errors. Specifically, the GLIM model we use is S2
ij following a

gamma distribution with scale parameter equal to r−1
2 and mean function equal to

σ2
ij = exp{θ0,i + θ1,i log(xij)}. (6)

Note that θ0,i = log(a0,i). This model is based on the assumption that log(S2
ij) has a simple

linear relationship with log(xij). Subject-matter theory and experience often give rise to

an appropriate variance model. The model given in Equation (6) is illustrated in Section 5

using the DuPont Crop Protection data.

Once the model parameters in Equation (6) are estimated using GLIM techniques, then

estimates of σ2
ij may be obtained. Let θ̂0,i and θ̂1,i be the GLIM estimators of θ0,i and θ1,i,

respectively. These estimators have an asymptotic normal distribution, and the estimator

of σ2
ij is

(σ̂2
ij)

GLIM = exp{θ̂0,i + θ̂1,i log(xij)}. (7)
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We refer to the expression in Equation (7) as the estimated variance profile for sampling

period i.

In order to check that the estimated variance profiles are in-control, we look for unusual

values of θ̂0,i and θ̂1,i. For example, an extremely large value of θ0,i could indicate that the

overall variability for variance profile i is too large. On the other hand, an out-of-control

value of θ1,i indicates that the rate of increase or decrease of heterogeneity of variance is

different for variance profile i. For positive values of θ1,i, the variability increases with xij ,

whereas for negative values the variability decreases with xij .

Since the estimators of θ0,i and θ1,i are correlated, it is more appropriate to account for

their relationship when testing for unusual values of θ̂0,i and θ̂1,i. We put θ̂0,i and θ̂1,i into

a vector as

θ̂i =
[

θ̂0,i

θ̂1,i

]
.

One method of identifying multivariate out-of-control variance profiles is use of control

charts based on Hotelling’s T 2 statistics. The T 2 statistic is a measure of the “distance”

between each multivariate observation and the mean observation in a dataset. We write the

general form of the T 2 statistic as

T 2
i =

(
θ̂i − µ̂θ

)′
S−1

(
θ̂i − µ̂θ

)
,

where µ̂θ is some estimator of the mean and S is some estimator of the variance-covariance

matrix of the θ̂i. The T 2
i statistics are plotted against i in a T 2 control chart with a

corresponding upper control limit (UCL). Whenever T 2
i exceeds UCL then an out-of-control

signal is observed. Those variance profiles that signaled as out-of-control are subject to

investigation and to possibly being removed from the HDS.

A common estimator of the mean is ¯̂
θ = m−1

∑m
i=1 θ̂i. There are many choices of the

estimator S. For a discussion of the various choices of S and the properties of the corre-

sponding T 2 statistics, see Sullivan and Woodall (1996), Vargas (2003), and Williams, et

al. (2006). As shown by Vargas (2003), one choice of S that is useful for detecting mul-

tiple multivariate outliers is one based on the minimum volume ellipsoid (MVE) variance-

covariance estimator first proposed by Rousseeuw (1984). Let SMV E be the MVE estimator
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of the variance-covariance matrix and let µ̂MV E
θ be the corresponding MVE estimator of

the mean vector. Then the T 2 statistics based on SMV E and µ̂MV E
θ are

T 2
MV E,i =

(
θ̂i − µ̂MV E

θ

)′
S−1

MV E

(
θ̂i − µ̂MV E

θ

)
. (8)

As discussed in Vargas (2003) and Williams, et al. (2006), the distribution of T 2
MV E,i is

unknown, and hence the UCL must be obtained by simulation.

As a second choice of S, Sullivan and Woodall (1996) and Williams, et al. (2006)

recommended use of the variance-covariance matrix based on successive differences of ob-

servations. This estimator was shown to be useful for detecting a step or ramp shift in the

mean vector, i.e., the value of θ shifts suddenly or drifts gradually. One example of this

is that the overall variability of the bioassay could decrease at some point in the HDS due

to deteriorating health of the test organisms, thus causing the value of θ0 to decrease. To

obtain the estimator, we define vi = θ̂i+1 − θ̂i for i = 1, . . . , m− 1 and stack the transpose

of these m− 1 difference vectors into the (m− 1)× 2 matrix V as

V =




v′1
v′2
...

v′m−1


 .

The estimator of the variance-covariance matrix is then

SD =
V′V

2(m− 1)
.

This estimator is analogous to the univariate moving range estimator of the variance in the

construction of an X-chart. We write the corresponding T 2 statistics based on SD as

T 2
D,i =

(
θ̂i − ¯̂

θ
)′

S−1
D

(
θ̂i − ¯̂

θ
)

. (9)

Unfortunately, the exact distribution of the T 2
D,i statistics is unknown. However, as shown

by Williams, et al. (2006), the asymptotic distribution of T 2
D,i is a good approximate

distribution whenever the number of samples m in the HDS is greater than p2 +3p, where p

is the number of parameters being estimated in θ̂i. In this case the asymptotic distribution

of T 2
D,i is χ2(p), for all i = 1, . . . , m. For smaller m, an approximate distribution based on
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the beta distribution could be used. The approximate distribution is given in Williams, et

al. (2006). For large m the UCL is calculated as

UCLT 2 = χ2(1− αI , p),

where χ2(q, p) is the qth quantile from a χ2 distribution with p degrees of freedom and αI is

an appropriately chosen nominal false alarm probability. When examining each profile for

unacceptable variance, we use a Bonferroni correction to protect against inflating the prob-

ability of a false alarm. Although other corrections are possible, the Bonferroni correction

is the most conservative. We let αI be the probability of a false alarm for any individual

T 2 statistic. Then the overall probability of a false alarm for a sample of m profiles is ap-

proximately αoverall = 1− (1− αI)m. Thus, for a given overall probability of a false alarm,

we use

αI = 1− (1− αoverall)1/m (10)

in calculation of UCLs. Common choices of αoverall are 0.05 and 0.01.

For purging the HDS of out-of-control observations, we recommend use of two T 2 control

charts, one based on T 2
MV E,i statistics and one based on T 2

D,i statistics, with their associated

UCLs. Those variance profiles that are determined to be out-of-control are investigated and

potentially removed from the HDS. We let m′ represent the number of remaining profiles

in the HDS. With the m′ remaining in-control variance profiles we move our attention to

analyzing the estimated mean profiles of the HDS.

3.3 Mean Profile

With the variance function estimates for the in-control variance profiles, we can calculate

estimates of βi for the remaining profiles in the HDS using wij = (σ̂−2
ij )GLIM as weights.

This is done via standard weighted nonlinear least squares (WNLS) methods using the

dose-response model chosen in Section 3.1. As a first step, initial estimates for all model

parameters need to be selected. It is very important to specify good starting values for

the model estimation. In finding good starting values, we recommend using as wide a grid
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search as time and computing resources allow. This is necessary since m′ profiles are being

fit using the same dose-response model. Inadequate starting values can lead to poor fits. It

may also be necessary to impose boundary constraints on the parameters if the estimation

algorithm fails to converge.

We then seek to identify out-of-control mean profiles. Two specific forms of out-of-

control conditions we seek to identify are (1) changes in the functional from of the model

and (2) unusual values of β̂i. The first will be evaluated in terms of lack-of-fit (LOF)

methods. The second will be addressed in terms of a T 2 control chart.

3.3.1 Lack-of-Fit

The most severe type of out-of-control profile is one where the underlying dose-response

model is different from the hypothesized model. This may be due to a number of causes,

including hormesis (spontaneous biological activity), biological variability, or even human

error. Often chemical and drug companies will produce their own test organisms in-house

for use in bioassay experimentation. If the susceptibility of the test organisms changes over

time then the dose-response model may no longer adequately describe the mean response

as a function of dose.

Constructing a true LOF test for the case of nonlinear regression with heteroscedastic

errors is a topic of current research. Bedrick (2000) and Arbogast and Bedrick (2004)

proposed goodness-of-fit tests for the linear regression model with heterogenous variances

for the non-replicated case, but this does not directly apply to replicated dose-response data

as is often the case in bioassay experiments.

One approach is to employ classical LOF methodology, substituting sums of squares

with weighted sums of squares, where the weights are equal to wij . The LOF statistic

compares the error sum of squares of a saturated model, sometimes called the means or

full model, to the error sum of squares of the specified regression model. Specifically, the

weighted sum of squared errors for the saturated model is

WSSEfull
i =

d∑

j=1

r∑

k=1

wij(yijk − ȳij.)2,
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where ȳij. = r−1
∑r

k=1 yijk is the mean of the r replications at dose j in profile i. Further,

we let ŷijk represent the estimated response for dose j and replication k of profile i, obtained

via WNLS. Then the weighted sum of squared errors for the nonlinear regression model is

given by

WSSEreg
i =

d∑

j=1

r∑

k=1

wij(yijk − ŷijk)2.

The lack-of-fit statistic compares the nonlinear model fit to the saturated model. Using

a small adjustment to the deviance test for lack-of-fit for the replicated normal data with

heteroscedasticity, we propose the lack-of-fit statistic for profile i as

LOFi =
(WSSEreg

i −WSSEfull
i )/dfLOF

WSSEfull
i /dffull

, (11)

where dfLOF = d−p represents the degrees of freedom for the lack-of-fit and dffull = d(r−1)

represents the degrees of freedom of the full model. As given in Neill (1988), the LOFi sta-

tistic for the nonlinear regression case with homogeneous variance approximately follows an

F distribution with dfLOF and dffull numerator and denominator degrees of freedom, re-

spectively. However, due to the heteroscedasticity typically present dose-response data, the

distribution of this statistic no longer follows the F-distribution, but may be approximated

very well by an F-distribution.

To assess lack-of-fit for profile i, we plot all LOFi statistics versus i in a lack-of-fit chart.

The UCL for the lack-of-fit chart is given by

UCLLOF = F(1− αI , df
LOF , dffull), (12)

where F(q, df1, df2) is the qth quantile from an F distribution with df1 and df2 numerator

and denominator degrees of freedom, respectively. Whenever LOFi exceeds UCLLOF , the

proposed dose-response model is determined to be inadequate for profile i. Those profiles

that exhibit lack-of-fit are subject to being removed from the HDS. We let m′′ represent

the number of remaining in-control profiles, where m′′ ≤ m′ ≤ m.
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3.3.2 Identifying Abnormal Mean Profiles

For those mean profiles that are are not determined to have significant lack-of-fit, we seek

to identify and remove unusual values of β̂i from the HDS. Because nonlinear regression

parameter estimators are correlated, we must account for their correlations in the analysis.

As in the case of θ̂i of Section 3.2, we calculate T 2 statistics to identify both multivariate

outliers and step or ramp shifts in the vector β. Specifically, let µ̂MV E
β and Sβ,MV E be the

MVE estimators of the mean vector and variance-covariance matrix of the β̂i vectors. Then

the corresponding T 2 statistics based on the MVE estimators are defined as

T 2
MV E,i =

(
β̂i − µ̂MV E

β

)′
S−1

β,MV E

(
β̂i − µ̂MV E

β

)
. (13)

Similarly, let Sβ,D be the variance-covariance matrix estimator based on successive differ-

ences. Then the T 2 statistics based on the successive differences variance-covariance matrix

estimator are defined as

T 2
MV E,i =

(
β̂i − ¯̂

β
)′

S−1
β,D

(
β̂i − ¯̂

β
)

, (14)

where ¯̂
β = 1

m′′
∑m′′

i=1 β̂i. The UCLs for the two T 2 charts are defined as in Section 3.2.

Using the T 2 charts and the associated UCLs we investigate and possibly remove the

out-of-control profiles from the HDS, and the remaining profiles in the HDS are presumed

to represent in-control profiles. Let m? represent the number of in-control profiles in the

HDS. Then, the last step in this phase of the analysis is to estimate the in-control mean

vector µβ and covariance matrix Σβ for use in continuous process monitoring, as discussed

in Section 4. Using the remaining m? in-control profiles from the HDS, the final estimate

of µβ is calculated as

µ̂β = ¯̂
β =

1
m?

m?∑

i=1

β̂i (15)

and the final estimate of Σβ is

Σ̂β =
1

m? − 1

m?∑

i=1

(
β̂i − ¯̂

β
)(

β̂i − ¯̂
β

)′
. (16)

In addition, we estimate the in-control values of θ from the variance profile model of

Section 3.2. Using the m? in-control profiles from the HDS, we calculate the moment
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estimators

µ̂θ =
1

m?

m?∑

i=1

θ̂i (17)

and

Σ̂θ =
1

m? − 1

m?∑

i=1

(
θ̂i − µ̂θ

)(
θ̂i − µ̂θ

)′
. (18)

4 Continuous Process Monitoring

Once the in-control mean and variance profiles are obtained, we construct control charts

for ongoing monitoring of the bioassay. The bioassay experiment is conducted at time t

(t = 1, . . . ), and the mean profile and the variance profile model of Sections 3.1 and 3.2,

respectively, are estimated. We seek to quickly detect any out-of-control profiles, which

may indicate that the bioassay is unreliable.

The charts used in this phase of the analysis are similar to the charts used in the previous

phase. The three charts used are the T 2 chart for the variance profile, the lack-of-fit chart,

and a T 2 chart for the mean profile. However, instead of using αI of Equation (10), we

choose an appropriate probability of a false alarm αII in continuous process monitoring. A

common choice of αII is αII = 0.001.

Whenever new equipment is introduced to the bioassay or there is some other reason to

believe that the in-control mean profile has changed, then a new HDS should be collected

and the methods of the previous phase repeated. This is especially the case for biological

processes, which are very sensitive to changes in environmental conditions.

4.1 Variance Profile Monitoring

To monitor the variance profile collected at time t, we employ the variance profile model

of Section 3.2 to estimate the value of θ from the bioassay conducted at time t. We then

use the estimated mean vector and variance-covariance matrix of θ̂, given in Equations (17)

and (18), to construct a T 2 control chart. The T 2
t , t = 1, 2, 3, . . . , statistics are calculated

as

T 2
t =

(
θ̂t − µ̂θ

)′
Σ̂
−1
θ

(
θ̂t − µ̂θ

)
.
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The UCL for this chart is given by

UCLT 2
θ

=
2(m? + 1)(m? − 1)

m?(m? − 2)
F(1− αII , p, m? − 2)

(Mason, Chou, and Young, 2001). Whenever T 2
t > UCLT 2

θ
then the chart signals, and

hence profile t is subject to further investigation.

4.2 The Lack-of-Fit Control Chart

Lack-of-fit can be assessed at time t using methods analogous to those in Section 3.3.1.

From the bioassay data obtained at time t, we calculate the LOF statistic as

LOFt =
(WSSEreg

t −WSSEfull
t )/dfLOF

t

WSSEfull
t /dffull

.

As mentioned in Section 3.3.1, the LOFt statistic follows an approximate F distribution

with dfLOF and dffull numerator and denominator degrees of freedom, respectively. We

plot all LOFt statistics by t in a lack-of-fit chart. The associated UCL is given by

UCLLOF = F(1− αII , df
LOF , dffull).

Whenever LOFt exceeds UCLLOF , then it is determined that the proposed dose-response

model has changed for profile t, and is subject to further investigation.

4.3 The T 2 Control Chart

The third control chart is the T 2 chart, useful for quickly detecting profiles with unusual

estimated parameter values. The T 2 statistic for profile t uses the estimates of µβ and Σβ

of Equations (15) and (16), respectively. The T 2 statistic is given by

T 2
t =

(
β̂t − µ̂β

)′
Σ̂
−1
β

(
β̂t − µ̂β

)
.

An approximate distribution of T 2
t is given by

T 2
t

m?(m? − p)
p(m? + 1)(m? − 1)

∼ F(p, m? − p),
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where p is the dimension of β̂ (Mason, Chou, and Young, 2001). The UCL is then calculated

as

UCLT 2 =
p(m? + 1)(m? − 1)

m?(m? − p)
F(1− αII , p,m? − p).

Whenever T 2
t exceeds UCLT 2 then profile t is declared to be out-of-control, and is subject

to further investigation.

5 Example

To illustrate the profile monitoring methods of Section 3, we analyze the HDS from DuPont

Crop Protection given in Figure 1 . The data consists of forty-four weeks (m = 44) of

in vivo bioassay results for standards (commercial crop protection products) run alongside

experimental compounds over a one-year time period. The bioassay procedure described

in Section 2 was employed using a commercial crop protection product and a test organ-

ism. Because of the proprietary nature of the bioassay, the commercial compound and test

organism used are undisclosed.

The commercial compound was diluted to eight doses (0.003, 0.009, 0.028, 0.084, 0.25,

0.76, 2.27, and 6.8) and replicated four times at each dose (r = 4) in 96-well microtiter

plates for each sampling period i. A spectrophotometer measured the optical density (OD)

of the plant organism after the inoculation period. Both treated and untreated wells were

measured for growth inhibition. The PCijk values were calculated using the median OD

(Mi) from 96 replications of untreated wells, as given in Equation (1).

The data plotted in Figure 1 indicate the presence of heterogeneity of variance across

the eight doses within each profile. The dominate pattern seen is that the sample variance

based on four replicates at each dose appears to be larger at the smaller doses than at the

larger doses. There are several exceptions to this as seen in the plots for weeks 6, 22, 24,

26, and 45. Based on subject-matter theory of the biological process, our proposed variance

model is the POX model given in Equation (5). We employed Equation (3) to calculate

S2
ij for i = 1, . . . , 44 and j = 1, . . . , 4, used the distributional properties of the S2

ij statistics
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given in Equation (4), and employed a GLIM model from Equation (6). Using this model

we obtained values of the estimators θ̂0,i and θ̂1,i for all 44 weeks of the DuPont data.

To graphically visualize the goodness-of-fit of this model, we plot the log(S2
ij) versus the

logarithm of dose and superimpose the logarithm of the predicted values of the variance

from Equation (7), given by log
(
(σ̂2

ij)
GLIM

)
. The plot is given in Figure 2. A plot of the

44 variance profiles overlaid in one graph is given in Figure 3.

(Insert Figures 2 and 3 about here)

To check for unusual variance profiles, we calculated T 2
MV E,i and T 2

D,i statistics based on

the values of θ̂i, as given in Equations (8) and (9), respectively. We chose αoverall = 0.05,

which corresponds to α = 0.001165, as given in Equation (10). The UCL for the chart based

on T 2
D,i is 13.51 and the UCL for the chart based on the MVE (obtained via simulation) is

approximately 23. The two charts are given in Figure 4.

(Insert Figure 4 about here)

The T 2 chart based on the T 2
D,i statistic does not signal, whereas observations 6, 20,

22, 24, 26, and 45 produced a signal in the chart based on T 2
MV E,i. Recall that the T 2

chart based on T 2
D,i statistics is not as powerful in detecting multivariate outliers as the

chart based on the T 2
MV E,i statistics. The observations that signal are extreme in both

θ0,i and θ1,i. In Figure 5 we plot the forty-four ordered pairs θ̂0,i and θ̂1,i. The six weeks

that produced the signal are extreme in both θ0,i and θ1,i. All are associated with variance

profiles with a positive slope value θ̂1,i Hence, these observations are removed from the HDS,

resulting in m′ = 38.

(Insert Figure 5 about here)

Now we use WNLS to estimate the mean profiles, where the estimated weights are

(σ̂−2
ij )GLIM from Equation (7). For completeness, we illustrate the estimated mean profiles

for all forty-four weeks in Figure 6.
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(Insert Figure 6 about here)

To check for appropriateness of the mean profile model, we calculated the lack-of-fit

statistic of Equation (11) based on the weighted sums of squares. From Equation (12) the

approximate UCL associated with the chart is 6.26, and the chart is given in Figure 7.

(Insert Figure 7 about here)

Although weeks 21, 30, 32, and 33 produced a signal, only observations 21 and 32 were

removed from the HDS. Weeks 30 and 33 exhibit only marginal lack-of-fit. This leaves

m′′ = 36 profiles remaining in the HDS.

Next we checked for unusual values of estimated parameters using a T 2 chart based on

the T 2
MV E,i and T 2

D,i statistics, as given in Equations (13) and (14), respectively. The UCLs

associated with the charts are 38 and 17.68, respectively. The charts are given in Figure 8.

(Insert Figure 8 about here)

Weeks 13, 34, and 48 produced a signal in the T 2 chart based on T 2
MV E,i, and observa-

tions 13 and 34 produced a signal in the chart based on T 2
D,i. All three of these weeks were

removed from the HDS. Subsequently, a second T 2 chart was created to further check for

out-of-control profiles after removing these weeks. The new UCLs for the two charts are 40

and 17.49, respectively. The charts are given in Figure 9.

(Insert Figure 9 about here)

Week 46 was identified as being out-of-control and was removed from the HDS. The

remaining weeks were presumed to be in-control. A plot of the in-control estimated mean

profiles is given in Figure 10.

(Insert Figure 10 about here)

The remaining m? = 32 profiles are now used to estimate the in-control mean vector

and variance-covariance matrix of θ̂i and the in-control mean vector and variance-covariance
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matrix of β̂i for future process monitoring. From Equations (17) and (18) the estimates for

the the variance profile are calculated as

µ̂θ =
[ −9.326028
−0.765682

]

and

Σ̂θ =
[

2.4730289 0.5147257
0.5147257 0.1396993

]
.

From Equations (15) and (16) the estimates for the the mean profile are calculated as

µ̂β =




0.8959855
2.3857821
0.0608633
0.4227484




and

Σ̂β =




0.0001282 −0.000134 −0.000055 0.0000786
−0.000134 0.4280911 0.0067914 0.0120498
−0.000055 0.0067914 0.0004831 0.0002597
0.0000786 0.0120498 0.0002597 0.0017581


 .

6 Discussion

In the DuPont dataset, there are a number of mean and variance profiles that have outliers,

and these outliers can have an undue influence on the parameter estimates. The estimate of

the variance profile is particularly influenced by outliers. For example, in Figure 1, we see

that in weeks 6 and 45 there are outliers, and the corresponding variance and mean profile

parameter estimates are slightly distorted, as seen in Figures 2 and 6. An alternative

approach would be to use outlier-robust methods to model both the mean and variance

profiles for purging the HDS of out-of-control profiles. Since the goal is to obtain an in-

control estimate of the mean vector and the covariance matrix of the parameter estimators,

then it makes sense to use outlier-robust methods to down weight the influence of outliers.

The subsequent in-control mean vector and covariance matrix can then be calculated from

the robust estimates. Use of such robust nonlinear modeling is a topic for further research.

In Sections 3.2 and 3.3.2 we recommended use of two T 2 control charts, one based on

T 2
MV E,i values and one based on T 2

D,i values. The former chart is useful for detecting the

presence of multiple multivariate outliers and the latter is useful for detecting the presence
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of a sustained shift in the mean vector. However, since the T 2
MV E,i and T 2

D,i statistics are

not independent then using both charts together inflates the probability of a false alarm. In

order to achieve a desired false alarm rate, the two control limits should both presumably

increase in order to control for multiple testing. The exact control limits needed for this

control chart combination is a topic for further research.

The methods we have proposed here are based on parametric models. One appeal of a

parametric approach in monitoring the dose-response quality profiles is the interpretability

of the model parameters. Although a nonparametric approach may be able to fit unusual

dose-response profile shapes more readily, the interpretation is not as clear. Further, there

is no guarantee that the nonparametric fit will conform to the underlying biological model.

Hence we recommend use of parametric modeling for continuous dose-response profile mon-

itoring.

7 Conclusion

We have introduced continuous process monitoring methodology for the case of heteroscedas-

tic dose-response profiles. The analysis began with purging the HDS of out-of-control mean

and variance profiles. Out-of-control profiles are identified based on control charts to detect

the presence of special causes in (1) the variance profile, (2) the functional form of the

mean profile, and (3) the mean profile. Those profiles that produced a signal in the charts

were subject to investigation and possible removal from the HDS. The remaining in-control

observations were subsequently used to estimate in-control mean and variance profile model

parameters for continuous process monitoring.

First, we proposed use of a variance function model to aid in monitoring the het-

eroscedasticity often present in bioassay experimentation. The HDS was purged of out-of-

control variance profiles through use of T 2 control charts based on variance profile parameter

estimates.

Second, we proposed use of a lack-of-fit chart to detect the presence of a change in

the functional form of the mean profiles of the HDS. The chart is based on the traditional
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lack-of-fit F statistic with the modification that sums of squares are replaced with weighted

sums of squares, where the weights are calculated based on the estimated variance profiles.

Third, we proposed use of T 2 control charts based on estimated parameter values of the

mean profiles in order to check for aberrant mean profiles. The mean profile estimates were

based on a WNLS estimation of the dose-response profiles, where the weights were obtained

from the estimated variance profiles.

To illustrate the proposed methods, we employed an HDS from DuPont Crop Protection

consisting of forty-four weekly dose-response results for standards run alongside experimen-

tal compounds from their high-throughput screening. Twelve weeks produced signals in the

control charts, were subsequently deemed as out-of-control, and removed from the HDS. In-

control mean and variance profile parameters were estimated from the remaining thirty-two

weeks for continuous process monitoring.

In HTS, replication for experimental compounds is often limited. However, a replicated

dose-response of standards can be used to monitor effectively the quality of the bioassay

used in screening.
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Figure 1: DuPont Dose-Response Data for m = 44 weeks
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Figure 2: Estimated variance profiles for all 44 weeks.
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Figure 3: Estimated variance profiles for all 44 weeks, overlaid.
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Figure 4: T 2 charts based on (a) T 2
MV E,i and (b) T 2

D,i to detect unusual variance profiles.
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Figure 5: Scatterplot of values of θ̂0,i and θ̂1,i for all forty-four weeks of the DuPont HDS.
Those six observations that produced a signal in the T 2 chart are indicated with the solid
black dot.



Figure 6: Estimated mean profiles based on estimated weights for all 44 weeks.
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Figure 7: Lack-of-fit chart based on the weighted sums of squares.
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Figure 8: T 2 charts based on (a) T 2
MV E,i and (b) T 2

D,i to detect unusual values of the
parameters estimates of the mean profiles.
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Figure 9: Second set of T 2 charts based on (a) T 2
MV E,i and (b) T 2

D,i to detect unusual values
of the parameters estimates of the mean profiles.
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Figure 10: Estimated in-control mean profiles.
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