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Abstract

Parameter design or robust parameter design (RPD) is an engineer-
ing methodology intended as a cost-effective approach for improving the
quality of products and processes. The goal of parameter design is to
choose the levels of the control variables that optimize a defined qual-
ity characteristic. An essential component of robust parameter design
involves the assumption of well estimated models for the process mean
and variance. Traditionally, the modeling of the mean and variance has
been done parametrically. It is often the case, particularly when mod-
eling the variance, that nonparametric techniques are more appropriate
due to the nature of the curvature in the underlying function. Most re-
sponse surface experiments involve sparse data. In sparse data situations
with unusual curvature in the underlying function, nonparametric tech-
niques often result in estimates with problematic variation whereas their
parametric counterparts may result in estimates with problematic bias.
We propose the use of semi-parametric modeling within the robust design
setting, combining parametric and nonparametric functions to improve
the quality of both mean and variance model estimation. The proposed
method will be illustrated with an example and simulations.

KEY WORDS: Response surface; Nonparametric regression; Model
robust regression; Genetic algorithm
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1 Introduction

In the mid 1980’s, Japanese quality consultant Genichi Taguchi popularized
a cost-efficient approach to quality improvement known as robust parameter
design (RPD). Taguchi postulated that there are two types of factors which
operate on a process: control factors and noise factors. Control factors are vari-
ables whose levels remain unchanged in the process once they are set, whereas
the levels of the noise factors change randomly within the process and cause un-
wanted variation in the response, y. The goal of robust parameter design is to
determine levels of the control factors which cause the response to be robust to
changes in the levels of the noise variables. A popular design for studying both
the impact of control factors and noise factors on a process is the crossed array.
A 22 × 22 crossed array is shown in Figure 1. Variation in the process which
results from uncontrollable fluctuations in the noise factors can be summarized
by taking the sample variance of the points in the noise factor space at each of
the control factor settings (4 points in the 22×22 example). The process can be
made robust to the variation associated with the noise factors by choosing the
factor combination of the control factors corresponding to the smallest sample
variance. It is often the case that the levels of the noise factors are unobservable
not only in the process but also in a controlled experimental setting. In these
situations, replications at the control factor settings provide the researcher with
an idea of process variability and the approach to robust design is the same;
namely, to choose the factor combination in the control factor space which cor-
responds to the smallest sample variance. It is these types of situations which
will be the focus of this manuscript.

Instead of using only the sample variances for describing the underlying pro-
cess variance, Vining and Myers (1990) introduced a dual model response surface
approach to RPD in which it is assumed that both the mean and variance can
be described by separate parametric regression models. Optimal control factor
settings are then found using constrained optimization (constrained estimated
mean and minimized process variance with respect to control factor settings).

If one or both models are misspecified by the researcher, the estimates may
be highly biased and, consequently, the optimal control factor settings may
be misspecified. Vining and Bohn (1998) [henceforth referred to as VB] point
out that traditional parametric models are often inadequate, particularly when
modeling the variance, and suggest the use of nonparametric techniques for
modeling the variance. Unfortunately, in sparse data situations, which are typ-
ically the case with response surface experiments, nonparametric techniques
often result in highly variable estimates. To overcome the pitfalls associated
with each method, we propose the use of semi-parametric modeling within the
robust design setting.

By using a semi-parametric technique for modeling, we can combine para-
metric and nonparametric functions to improve the quality of both the mean
and variance models. The resulting semi-parametric estimates will have smaller
bias and variance. Furthermore, these hybrid estimates will result in a better
understanding of the process at hand. In turn, the optimal factor settings are
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less likely to be misspecified. We will illustrate the use and benefit of our pro-
posed method with an application to the Box and Draper (1987) printing ink
study and simulations. We also suggest the use of a more flexible and efficient
optimization routine, the genetic algorithm, for determining optimal control
factor settings.

2 An Overview of Parametric and Nonparamet-
ric Approaches

2.1 Parametric Approach

Given the data from a crossed array, there are a number of potential approaches
to directly modeling the mean and variance as a function of the control factors.
A general approach is to assume that the underlying functional forms for the
mean and variance models can be expressed parametrically. Assuming a d point
design with ni replicates at each location (i = 1, 2, . . . , d), the point estimators
of the process mean and variance, ȳi and s2

i , respectively, form the data for
the dual response system. Since the purpose of this article is to demonstrate
the utility of a hybrid approach (combining a parametric and nonparametric
approach to modeling) for robust design, we will consider an “off the shelf”
model for the mean. An “off the shelf” model for the process mean is linear in
the model parameters and can be written as:

Means Model: ȳi = x′iβ + g1/2 (x∗′i ; γ) εi, (1)

where x′i and x∗′i are 1×k and 1× l vectors of means model and variance model
regressors, respectively, expanded to model form, β and γ are k × 1 and m× 1
vectors of mean and variance model parameters, respectively, g is the underlying
variance function, and εi denotes the random error for the mean function. The
εi are assumed to be uncorrelated with mean zero and variance of one. Note
that the model terms for the ith observation in the means model are denoted
by x′i while the model terms for the variance model are denoted by x∗′i . This
allows for the fact that the process mean and variance may not depend on the
same set of regressors.

Similar to the modeling of the mean, various modeling strategies have been
utilized for estimating the underlying variance function. Bartlett and Kendall
(1946) demonstrated that if the errors are normal about the mean model and
if the design points are replicated, the variance can be modeled via a log-linear
model with the d sample variances utilized for the responses. A great deal
of work has also been done using generalized linear models for estimating the
variance function. Although not an exhaustive list, the reader is referred to
Box and Meyer (1986), Aitkin (1987), Grego (1993), Lee and Nelder (2003),
and Myers, Brenneman, and Myers (2005). As mentioned previously, since the
purpose of this manuscript is to demonstrate the utility of a hybrid approach
to modeling, we choose an “off the shelf” approach to variance modeling. The
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log-linear model proposed by Bartlett and Kendall (1946) is a popular one [see
Vining and Myers (1990) and Myers and Montgomery (2002)] and is written
explicitly as:

Variance Model: ln(s2
i ) = g∗ (x∗i ) + ηi = x∗′i γ + ηi, (2)

where ηi denotes the model error term whose expectation is assumed to be zero
and whose variance is assumed constant across the d design points.

Assuming the model forms for the mean and variance given in (1) and (2),
the model parameters are estimated using the following estimated weighted least
squares (EWLS) algorithm:

Step 1: Fit the variance model, ln(s2
i ) = x∗′i γ + ηi, via ordinary least squares

(OLS), obtaining γ̂(OLS) = (X∗′X∗)−1 X∗y∗ where y∗ is the d× 1 vector
of log transformed sample variances.

Step 2: Use σ̂2
i = exp

(
x∗′i γ̂(OLS)

)
as the estimated variances to compute the

d × d estimated variance-covariance matrix for the means model, V̂ =
diag

(
σ̂2

1 , σ̂2
2 , . . . , σ̂2

d

)
.

Step 3: Use V̂−1 as the estimated weight matrix to fit the means model,

yielding β̂
(EWLS)

=
(
X′V̂−1X

)−1

X′V̂−1ȳ where ȳ denotes the d × 1
vector of sample averages.

The algorithm above yields the following estimates of the process mean and
variance functions:

Estimated Process Mean: Ê[yi]
(EWLS)

= x′iβ̂
(EWLS)

(3)

Estimated Process Variance: V̂ ar[yi]
(OLS)

= exp
(
x∗′i γ̂(OLS)

)
. (4)

Once estimates of the mean and variance have been calculated, the goal becomes
finding the operating conditions for the control factors such that the mean is as
close as possible to the target while maintaining minimum process variance.

Any control factor which influences the expression in (4) is known as a
dispersion factor. Any control factor that does not influence the expression in
(4) but does influence the expression in (3) is known as an adjustment factor.
When both dispersion and adjustment factors are present, the robust design
problem can be approached in a two-step fashion. Specifically, levels of the
dispersion factors are chosen so as to minimize the estimated process variance
in (4), and then the levels of the adjustment factors are chosen so as to bring
the estimated process mean in (3) to a desired level. If only dispersion factors
are present and these factors also influence the process mean, the researcher is
left with finding the levels of the control factors that yield a desirable trade-off
between low variance and a deviation from the targeted mean. This is often
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accomplished via minimization of an objective function such as the squared
error loss (SEL):

SEL = E [y(x)− T ]2 = {E [y(x)]− T}2 + V ar [y(x)] , (5)

where T denotes the target value for the process mean. Minimization can be ac-
complished via non-linear programming using a method such as the generalized
reduce gradient or the Nelder-Mead simplex algorithm. The squared error loss
approach is also useful when adjustment factors are present but are not strong
enough to bring the mean to the targeted value. Note that the determined set of
optimal operating conditions is highly dependent on quality estimation of both
the mean and variance functions. Misspecification of the forms of either the
mean or variance models can have serious implications in process optimization.

2.2 Nonparametric Approach

Situations may arise in which the user cannot explicitly state parametric forms
for the dual model. In these situations, parametric specifications may result
in serious bias of the estimated mean and/or variance. To prevent the bias in-
duced by parametric model misspecification, VB and Anderson-Cook and Pre-
witt (2005) [henceforth referred to as AP] suggest the use of nonparametric
regression for estimating the process mean and variance. Expressing the dual
model where the mean and variance functions (h and g∗, respectively) are as-
sumed to have unknown but smooth forms we have:

Means Model: ȳi = h (x′i) + g1/2 (x∗′i ) εi

Variance Model: ln(s2
i ) = g∗ (x∗′i ) + ηi.

Similar to parametric regression, estimators are linear combinations of the
response values ȳi and ln(s2

i ); however, the weighting schemes in some nonpara-
metric regression methods assign more weight to observations closest to the
point of prediction, x0. The nonparametric fits are more flexible than the para-
metric fits as they are not confined to the user’s specified form. This enables
the nonparametric approach to more adequately fit processes whose underlying
models have more complicated forms than those expressed by the linear models
in (1) and (2).

Several fitting techniques have been proposed in the nonparametric regres-
sion literature such as kernel regression [see for example Nadaraya (1964),
Watson (1964), Priestley and Chao (1972), and Gasser and Müller (1984)],
local polynomial models [see for example Fan and Gijbels (1996)], spline-based
smoothers, and series-based smoothers [see for example Ruppert, Wand, and
Carrol (2003)]. VB first applied nonparametric smoothing in the RPD set-
ting by using the Gasser-Müller estimator for the dual response problem. AP
continued with this idea by using the Nadaraya-Watson estimator and local
polynomial regression, the method used in this research. Local polynomial re-
gression (LPR) is a popular class of nonparametric smoothing methods and
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is particularly appealing in response surface applications due to its robustness
to biased estimates at the boundary of the design space. LPR is essentially a
weighted least squares (WLS) problem where the weights are given by a kernel
function. The polynomial form of the local polynomial fit can be of order one
or greater and we focus on degree p = 1 (local linear regression (LLR)) in this
article.

For the multiple regressor case, at point x0 = (x01, x02, . . . , x0k) where pre-
diction is desired, we define the kernel function as:

K(x0, x̃i) =
1
bk

k∏

j=1

K

(
x0j − x̃ij

b

)
, (6)

where x̃i = (xi1, xi2, . . . , xik), K
(

x0j−x̃ij

b

)
is a univariate kernel function, and

b is the bandwidth. Note that when estimating both the mean and variance
nonparametrically, a different kernel function may be used for the mean than
for the variance since the regressors effecting the mean do not necessarily effect
the variance. The choice of kernel function is not crucial to the performance of
the estimator (Simonoff, 1996). Thus, for convenience, we will use the simplified
Gaussian kernel, K(u) = e−u2

.
The smoothness of the estimated function is controlled by the bandwidth,

b. Since the coding of variables in response surface designs typically involves
centering and scaling, the units are comparable in all directions. Thus, it is rea-
sonable to use the same bandwidth, b, in all dimensions as expressed in (6). The
choice of bandwidth is critical and the literature is rich with bandwidth selection
methods [see for example Härdle (1990), Härdle et al. (2004)]. Typically the
bandwidth is chosen to minimize some optimality criteria such as MSE. Mays,
Birch, and Starnes (2001) [henceforth referred to as MBS] introduce a penalized
cross-validation technique, PRESS∗∗, for choosing an appropriate bandwidth.
The approach chooses the bandwidth as the value b that minimizes PRESS∗∗,
defined as:

PRESS∗∗ =
PRESS

d− trace
(
H(LLR)

)
+ (d− (k + 1)) SSEmax−SSEb

SSEmax

,

where SSEmax is the largest error sum of squares over all possible bandwidth
values, SSEb is the error sum of squares associated with a particular bandwidth
value b, k is the number of regressors, and the prediction error sum of squares,
PRESS, is given by:

PRESS =
d∑

i=1

(yi − ŷi,−i)
2
,

where ŷi,−i denotes the estimated response obtained by leaving out the ith

observation when estimating at location xi. The LLR smoother matrix, H(LLR),
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is defined as:

H(LLR) =




h(LLR)′
1

h(LLR)′
2

...
h(LLR)′

d




where h′i is defined below. MBS show that PRESS∗∗ performs well by guarding
against very small and very large bandwidths.

The nonparametric estimate of the dual model is found by first estimating
the underlying variance function and then, using the estimated variances as
weights, an estimated weighted local linear regression (EWLLR) fit is found for
the mean. For more information regarding weighted LLR, the reader is referred
to Lin and Carroll (2000). Expressions for the fits are provided below:

Estimated Process Mean: Ê[y0]
(EWLLR)

= x′0β̂
(EWLLR)

= x′0 (X′W0X)−1 X′W0ȳ

= h(EWLLR)′
0 ȳ (7)

Estimated Process Variance: V̂ ar[y0]
(LLR)

= exp
(
x∗′0 γ̂(LLR)

)

= exp
[
x∗′0 (X∗′W∗

0X
∗)−1 X∗′W∗

0y
∗
]

= exp
(
h(LLR)′

0 y∗
)

. (8)

Regarding notation for the means fit, h(EWLLR)′
0 = x′0(X

′W0X)−1X′W0ȳ,

W0 =
〈√

h
(KER)
0i

〉
V̂−1

〈√
h

(KER)
0i

〉
where

〈√
h

(KER)
0i

〉
is the diagonal ma-

trix containing the square roots of the kernel weights associated with x0,
〈√

h
(KER)
0i

〉
=

diag

(√
h

(KER)
01 ,

√
h

(KER)
02 , . . . ,

√
h

(KER)
0d

)
with h

(KER)
0i = K(x0,x̃i)∑d

i=1 K(x0,x̃i)
, and

V̂ is the estimated variance-covariance matrix, V̂ = diag
(
σ̂2

1 , σ̂2
2 , . . . , σ̂2

d

)
. Re-

garding notation for the variance fit, h(LLR)′
0 = x∗′0 (X∗′W∗

0X
∗)−1X∗′W∗

0y
∗ and

W∗
0 is the diagonal matrix containing the kernel weights associated with x∗0.

Under the assumption of normality of ȳ and y∗, the estimates of E[y0] and
V ar[y0] given by (7) and (8) are the local maximum likelihood estimates of Fan,
Heckman, and Wand (1995).

Similar to the parametric approach to robust design, once estimates of the
mean and variance functions have been calculated, a squared error loss approach
will be used for process optimization. Unfortunately, most of the analytic opti-
mization methods suggested for the parametric approach are based on gradient
techniques which require continuous functions with derivatives for the estimated
mean and variance functions. Since the mean and variance estimates from non-
parametric methods do not result in closed form expressions, these optimization
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routines are no longer applicable. VB utilize a simplex search based on the
AMOEBA algorithm (Vetterling et al., 1992) which does not require the calcu-
lation of derivatives; however, simplex methods tend to be time consuming and
often find local, as opposed to global optima [for details, see Haupt and Haupt
(2004)]. Therefore we advocate the use of genetic algorithms for optimization.

The genetic algorithm (GA), originally developed by Holland (1975), has
become a popular optimization technique. It is especially useful for optimiz-
ing functions that do not have known parametric forms, as it does not require
derivatives to find the optimal solutions. Instead, the GA is based on the princi-
ples of genetics and uses evolutionary concepts such as selection, crossover, and
mutation to find the optimal solutions. Furthermore, GA uses an intelligent,
sequential search strategy which enables the user to find global, not local, solu-
tions more efficiently (Goldberg, 1989). Thus, we will use the GA for process
optimization.

2.3 Parametric vs. Nonparametric

Parametric and nonparametric approaches to modeling each possess positive and
negative attributes. The parametric method is superior if the true, underlying
functions can be adequately expressed parametrically and if the user correctly
specifies the parametric forms. However, if either of the models is misspecified,
the estimates may be highly biased and optimal control factor settings may be
miscalculated. On the other hand, if the user has no idea about the true form of
the underlying functions, nonparametric methods offer a nice alternative. Non-
parametric methods can provide superior fits by capturing structure in the data
that a misspecified parametric model cannot. However, nonparametric methods
were originally developed for situations with large sample sizes whereas a main
underpinning of RSM is the use of cost-efficient experimental designs (i.e., small
sample sizes). In small sample settings, nonparametric fitting techniques may
fit irregularities in the data too closely thereby creating estimated mean and
variance functions that are highly variable. Consequently, optimization may be
based on non-reproducible idiosyncrasies in the data. MBS introduce methods
which are essentially hybrids of the parametric and nonparametric methods.
These semi-parametric approaches produce estimated functions which are char-
acterized by lower bias than parametric approaches and lower variance than
nonparametric approaches. The details of this hybrid approach appear in the
next section.

3 A Semi-Parametric Approach

When used individually, both parametric and nonparametric regression methods
have shortcomings. In this section we present the use of semi-parametric tech-
niques for overcoming some of these drawbacks, especially in situations where
the user has partial knowledge of the underlying model or the data contains im-
portant “bumps” that parametric models cannot capture. The semi-parametric
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estimates proposed combine individual parametric and nonparametric fits via
appropriately chosen mixing parameters. We detail the methodologies below.

3.1 Model Robust Regression 1 (MRR1)

Einsporn and Birch (1993) proposed a semi-parametric method for modeling
the mean response for assumed constant error variance. Their technique, model
robust regression 1 (MRR1), combines parametric and nonparametric fits to the
raw data in a convex combination via a mixing parameter, λ. For instance, if
ŷ(OLS) denotes the vector of ordinary least squares estimates of the mean and
ŷ(LLR) denotes the vector of local linear regression estimates of the mean, then
the MRR1 estimated mean responses are obtained as:

ŷ(MRR1) = λŷ(LLR) + (1− λ)ŷ(OLS),

where λ ∈ [0, 1]. For cases where the user’s specified parametric model is correct,
the optimal value of the mixing parameter, λ, is 0 and as the amount of model
misspecification increases, λ increases from 0 to 1.

Similar to the choice of bandwidth in LLR, the choice of mixing parameter,
λ, involves a bias-variance trade-off. MBS derive the following data driven
expression for the asymptotically optimal value of the mixing parameter, λ, for
MRR1:

λ̂
(MRR1)
opt =

〈
ŷ(LLR)
−i − ŷ(OLS)

−i ,y − ŷ(OLS)
〉

∥∥ŷ(LLR) − ŷ(OLS)
∥∥2 , (9)

where the ith observations of ŷ(LLR)
−i and ŷ(OLS)

−i are ŷ
(LLR)
i,−i and ŷ

(OLS)
i,−i , re-

spectively. The values ŷ
(LLR)
i,−i and ŷ

(OLS)
i,−i denote the LLR and OLS estimates,

respectively, obtained by leaving out the ith observation when estimating at xi.
The notation 〈 〉 represents the inner product and ‖ ‖ represents the standard
L2 (Euclidean) norm.

MRR1 produces a smooth estimate that captures important anomalies in
the data, which parametric methods are incapable of modeling. By containing
a parametric portion for the overall fit, MRR1 brings stability to the overall fit
and eliminates over-fitting the data, a problem associated with nonparametric
regression. Thus, MRR1 estimates often have smaller bias and variance than
their individual parametric and nonparametric counterparts, especially for small
sample sizes. It should be noted, however, if there are locations in the data where
both the parametric and nonparametric estimates are too high or too low, then
the MRR1 estimates will also be too high or too low as the method has no
means to correct for the error.

3.2 Model Robust Regression 2 (MRR2)

Model robust regression 2 (MRR2) was introduced by Mays, Birch, and Ein-
sporn (2000) as an improvement to the MRR1 approach for estimating the mean
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with constant variance. Similar to MRR1, MRR2 combines a parametric fit and
a nonparametric fit via a mixing parameter; however, the parametric fit is to
the raw data (as in MRR1) while the nonparametric fit is to the residuals from
the parametric fit. The vector of residuals (r) represents the structure in the
data which is not captured by the user specified parametric model. The vector
of residuals is fit nonparametrically via LLR resulting in the following vector of
smoothed residuals:

r̂ = H(LLR)
r r,

where H(LLR)
r is computed similarly to the LLR smoother matrix in (7) but

with the “response” variable being the residuals from the OLS fit to the raw
data. The MRR2 estimates are then obtained by adding a portion of the LLR
smoothed residuals back to the original parametric fit, yielding:

ŷ(MRR2) = ŷ(OLS) + λr̂,

where λ ∈ [0, 1]. The size of the mixing parameter for MRR2 does not necessarily
represent the amount of model misspecification as it does in MRR1. Instead,
the value of λ indicates the amount of correction needed from the residual fit.
Notice that λ = 1 actually represents only a 50% contribution from the residual
fit as the coefficient for the parametric fit is always one. Similar to MRR1,
MBS derive a data driven expression for the asymptotically optimal mixing
parameter. The expression is given as:

λ̂
(MRR2)
opt =

〈
r̂,y − ŷ(OLS)

〉

‖r̂‖2 . (10)

MBS show that both MRR methods perform as well or better than the in-
dividual parametric and nonparametric methods for varying degrees of model
misspecification both in an asymptotic sense as well as small sample settings.

3.3 Dual Model Robust Regression (DMRR)

Robinson and Birch (2002) extend the MRR techniques to models with non-
constant error variance. Robinson and Birch (2002) consider the unreplicated
design case and therefore use a residual-based variance estimate. Similar to
the results of MBS, Robinson and Birch (2002) show that dual model robust
regression (DMRR) is not only asymptotically superior to its parametric and
nonparametric counterparts but that DMRR also performs better in small sam-
ple settings. Consequently, we propose DMRR as a natural tool for RSM and
the RPD problem. Although originally developed for the regression case with
little or no replication, we demonstrate here its extension to replicated designs
in which the variance may be modeled directly.

Assuming that the process mean and variance functions can be expressed as
functions with two components, a user supplied parametric component and a
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“lack of fit” component, the dual model can be written as:

Means Model: ȳi = h (x′i; β) + f (xi) + g1/2 (x∗′i ;γ) εi,

Variance Model: ln(s2
i ) = g∗ (x∗′i ;γ) + l (x∗i ) + ηi.

Regarding notation, h (x′i; β) and g∗ (x∗′i ; γ) denote the user specified parametric
forms for the mean and variance functions [for purposes of discussion in this
manuscript we assume h (x′i; β) = x′iβ and g∗ (x∗′i ; γ) = x∗′i γ]. The “lack of fit”
components for the mean and variance functions, f (xi) and l (x∗i ), respectively,
represent the portions of the mean and variance functions which cannot be
captured parametrically. The only assumptions placed on f and l is that they
are reasonably smooth functions.

As mentioned earlier, MBS demonstrate that MRR2 performs better than
MRR1 overall. However, for variance modeling, there is nothing to guarantee
positive fits in the MRR2 approach. Hence for the dual modeling problem,
we suggest the use of MRR1 for estimation of the variance and MRR2 for
estimation of the means model. Thus, the following algorithm can be used to
find the DMRR estimates:

Step 1: Fit the variance model, ln(s2
i ) = x∗′i γ + l (x∗i ) + ηi, via model robust

regression 1 (MRR1). MRR1 yields the variance model robust regression
(VMRR) estimates:

V̂ ar[y]
(V MRR)

= exp
[
λσŷ∗(LLR) + (1− λσ) ŷ∗(OLS)

]

= exp
[
λσH(LLR)

σ y∗ + (1− λσ)H(OLS)
σ y∗

]

= exp
[
λσH(V MRR)

σ y∗
]
,

where λσ ∈ [0, 1] is the variance model mixing parameter and H(V MRR)
σ

is the smoother matrix for the VMRR fit to the log transformed sample
variances.

Step 2: Use σ̂2
i = exp

(
h(V MRR)′

i,σ y∗
)

as the estimated variances to com-

pute the estimated variance-covariance matrix for the means model, V̂ =
diag

(
σ̂2

1 , σ̂2
2 , . . . , σ̂2

d

)
, where h(V MRR)

i,σ is the ith row of H(V MRR)
σ .

Step 3: Use V̂−1 as the estimated weight matrix to obtain the parametric es-
timate of the means model via estimated weighted least squares (EWLS).

EWLS yields β̂
(EWLS)

=
(
X′V̂−1X

)−1

X′V̂−1ȳ and Ê[yi]
(EWLS)

=

x′iβ̂
(EWLS)

= H(EWLS)
µ ȳ.

Step 4: Form the residuals from the EWLS fits found in Step 3, r = ȳ −
Ê[y]

(EWLS)
, and perform local linear regression on the residuals. LLR
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yields r̂ = H(LLR)
r r, where H(LLR)

r is the smoother matrix for the LLR fit
to the residuals from the EWLS fit to the means model.

Step 5: Obtain the means model robust regression (MMRR) estimates via
MRR2 as:

Ê[y]
(MMRR)

= Ê[y]
(EWLS)

+ λµr̂

=
[
H(EWLS)

µ + λµH(LLR)
r

(
I−H(EWLS)

µ

)
ȳ
]
,

= H(MMRR)
µ ȳ

where λµ ∈ [0, 1] is the means model mixing parameter.

For the nonparametric estimates, the bandwidths, bµ and bσ, will be chosen
as the values that minimize PRESS∗∗. The mixing parameters, λσ and λµ, for
the variance and mean fits, respectively, will be chosen via the asymptotically
optimal expressions for MRR1 and MRR2 as given in (9) and (10), respectively,
with ŷ(OLS) replaced with ŷ(EWLS). Similar to the parametric and nonpara-
metric approaches, once estimates of the mean and variance functions have been
calculated, a squared error loss approach will be used for process optimization.
Furthermore, as in the nonparametric approach, the genetic algorithm will be
used for optimization since the estimates of the mean and variance functions do
not take on closed form expressions.

4 The Printing Ink Example

The Box and Draper (1987) printing ink study has been analyzed throughout
the RPD literature [see for example Vining and Myers (1990) and VB]. The
purpose of the study was to examine the effect of three factors, speed (x1),
pressure (x2), and distance (x3), on a printing machine’s ability to apply ink
to package labels. The experiment used a 32 complete factorial with three
replicates at each design point. The goal of the study was to find an optimal
location where the process variance is minimized and the process mean achieves
a target value of 500. Table 1 provides the results of the experiment. Note that
two locations (i = 10 and 14) have a sample standard deviation of zero. Thus,
to accommodate the log transformation for the variance model, we will replace
the observed sample variances, s2

i , with s2
i +1. For our purposes, we will assume

that the user has specified a first-order model for the log transformed variance
model and a second-order model for the mean.

The nonparametric and semi-parametric approaches involve the choice of
an appropriate global bandwidth for the kernel function. Using PRESS∗∗, we
obtain a bandwidth of 0.63 for the variance model and 0.52 for the means model
in the nonparametric approach. These bandwidths meet the recommendations
of AP. A bandwidth of 0.51 was chosen for the nonparametric smooth of the
EWLS residuals in the semi-parametric fit to the mean.
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Furthermore, the semi-parametric approach involves the choice of appropri-
ate mixing parameters, λσ and λµ. For the variance model, the asymptotically
optimal data driven mixing parameter is found to be 0.6812. This value sug-
gests that there is a moderate amount of variance model misspecification; that
is, there are some trends in the data that the parametric model cannot ade-
quately capture. The asymptotically optimal data driven mixing parameter for
the means model is found to be 1.0. Therefore, the addition of the entire non-
parametric residual fit provides necessary correction to the parametric means
model.

Using the genetic algorithm with the squared error loss (SEL) objective
function as given in (5), we obtain the optimal factor settings displayed in
Table 2. Notice that all three approaches suggest an x1 value of 1.000. Also the
nonparametric and semi-parametric methods both recommend an x2 value of
1.000. The most dramatic difference in the solutions is seen in the x3 coordinate.
While all three methods suggest negative values for the factor, the actual settings
for x3 vary greatly. Coincidentally, x3 is the most significant factor in the
parametric variance model.

In Table 2, we also see that the optimal factor settings for the semiparamet-
ric approach (x1 = 1.000, x2 = 0.543, x3 = −0.382) yield an estimated process
mean of 497.6278, which is closest to the target value of 500, and an estimated
process variance of 1019.523, the lowest among the three methods. As a result,
the semi-parametric approach also results in the lowest estimated SEL value.
Thus, we would conclude that this new method performs better than its para-
metric and nonparametric counterparts. Ultimately, the only way to determine
which approach gives the best optimization results is to perform a confirmatory
experiment. Unfortunately, we cannot do so for this example, but we can use
simulations to compare the three approaches in general.

5 Simulations

In the printing ink example, the semi-parametric fit was observed to be su-
perior to its parametric and nonparametric counterparts in terms of SEL. In
this section, we compare the three methods more generally in terms of fit via
a simulation study. The performance of the semi-parametric approach will be
compared to the parametric and nonparametric approaches in four scenarios:
the researcher correctly specifies the forms of both the underlying mean and
variance functions, the researcher correctly specifies the form of the underlying
variance function but misspecifies the means model, the researcher correctly
specifies the form of the means model but misspecifies the variance model, and
the researcher incorrectly specifies the forms of both the underlying mean and
variance functions. For each scenario, Monte Carlo simulations will be used to
generate 500 data sets, each of which are based on the following underlying dual
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model:

yi = 20− 10x1i − 25x2i − 15x1ix2i + 20x2
1i + 50x2

2i

+γµ [10 sin (4πx1i) + 10 cos (4πx2i) + 10 sin (4πx1ix2i)]

+g1/2 (x∗i ) εi (11)

ln
(
σ2

i

)
= g∗ (x∗i ) = 1.5− x1i + 1.5x2i + γσ

[−4x1ix2i + 2x2
1i + x2

2i

]
,(12)

where εi ∼ N(0, 1), γµ represents the means model misspecification parameter,
and γσ represents the variance model misspecification parameter. As in the
printing ink example, we assume a full second-order model is specified by the
user for the mean and a first-order model specification for the log transformed
sample variances. In all scenarios, factors x1 and x2 have four levels with values
are taken to be 0, 1/3, 2/3, and 1 for each factor. The data will be generated as
if a 42 complete factorial experiment was run with three replicates at each design
point for a total of 16 design points and 48 experimental runs. As the values of
γµ and γσ increase, the amount of misspecification increases in the means and
variance model, respectively. Five degrees of means model misspecification will
be studied (γµ = 0.00, 0.25, 0.50, 0.75, and 1.00), and five degrees of variance
model misspecification will be studied (γσ = 0.00, 0.25, 0.50, 0.75, and 1.00).
The R language is used for computations and simulations.

Figure 2 shows the response surface for the true underlying means model
when γµ = 0.00, and the response surfaces of the mean function for the varying
degrees of model misspecification (γµ = 0.25, 0.50, 0.75, and 1.00) appear in
Figures 3 through 6, respectively. Notice that as γµ increases, the curvature
of the mean surface becomes much more pronounced. Figure 7 shows the re-
sponse surface for the true underlying variance model when γσ = 0.00, and the
response surfaces of the variance function for the varying degrees of model mis-
specification (γσ = 0.25, 0.50, 0.75, and 1.00) appear in Figures 8 through 11,
respectively. Again notice that as γσ increases, the curvature of the variance
surface becomes much more pronounced.

Comparisons will be based on the Monte Carlo simulated integrated mean
squared error for the mean and variance estimates given by:

SIMSEM =
∑

asem

500
, asem =

∑
(E[yi]− ŷi)

2

1600
,

SIMSEV =
∑

asev

500
, asev =

∑(
σ2

i − σ̂2
i

)2

1600
,

where ‘asem’ and ‘asev’ denote the average squared error for the mean and
variance functions, respectively, across 1600 x0 locations (based on a 40 × 40
uniform grid of points in the regressor space) for each of the 500 simulated
data sets and E[yi] and σ2

i are the true underlying mean and variance models,
respectively.
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5.1 Means and Variance Models Correctly Specified

For the scenario in which the researcher correctly specifies the forms of both
the underlying mean and variance functions, we would expect the parametric
approach to be superior for both models. In this scenario, the means model
is given by (11) with γµ = 0.00 and the variance model is given by (12) with
γσ = 0.00. The first row of Table 3 and the first row of Table 4 provide a
comparison of the three approaches based on the SIMSE values for this scenario.
Regarding the estimated mean, Table 3 shows that the parametric approach
performs best as it yields an SIMSEM value of 0.4335. The semi-parametric
approach is a close second with a value of 0.6151, whereas the nonparametric fit
is much worse with a SIMSEM value of 7.9748. As for the estimated variance,
Table 4 shows that the parametric approach performs best with a SIMSEV value
of 17.9190. Note when γµ = γσ = 0.00, one would expect the parametric to
do best. It is interesting, however, that the semi-parametric method is a close
competitor to the parametric approach in this scenario.

5.2 Variance Model Correctly Specified, Means Model Mis-
specified

Rows 6, 11, 16, and 21 of Table 3 provide the SIMSEM values for the scenario in
which the researcher correctly specifies the variance model but misspecifies the
mean model (i.e., γσ = 0.00 and γµ > 0.00). The semi-parametric approach out-
performs its parametric and nonparametric counterparts for moderate levels of
mean misspecification (i.e., γµ ≤ 0.50) and competes closely with the nonpara-
metric approach for more extreme levels of misspecification (i.e., γµ ≥ 0.75).
Note that as γµ increases from zero, the parametric fit to the mean becomes
much less competitive. The semi-parametric fit to the mean is at least highly
competitive or superior to the other methods for the entire range of γµ.

5.3 Means Model Correctly Specified, Variance Model Mis-
specified

Rows 2 through 5 of Table 3 show the SIMSEM values for the scenario in which
the researcher correctly specifies the means model (i.e., γµ = 0.00) but mis-
specifies the form of the variance (i.e., γσ > 0.00). Even though the estimated
variances are incorporated in the weighted estimation of the mean, variance mis-
specification has little impact on the estimated mean. Table 3 shows that the
SIMSEM values consistently increase for all three approaches as the variance
misspecification increases. Nonetheless, the parametric and semi-parametric ap-
proaches still perform best when the means model is correctly specified, whereas
the nonparametric fit is consistently subpar. As for the estimated variance, rows
2 through 5 of Table 4 provide the SIMSEV values for each of the methods. The
semi-parametric approach performs best when there is moderate to large vari-
ance misspecification (i.e., γσ > 0.50) and is competitive for lower degrees of
misspecification.
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5.4 Means and Variance Models Misspecified

The remainder of the results in Table 3 provide a comparison for the scenario
in which the researcher misspecifies the forms of both the underlying mean and
variance functions (i.e., γµ > 0.00 and γσ > 0.00). Again, it appears that vari-
ance misspecification has little impact of mean estimation. The biggest impact
on mean estimation is the user’s specification of the underlying means model.
Overall, the semi-parametric approach performs best if there is small to moder-
ate mean misspecification and/or moderate to large variance misspecification.
It is important to note that even when the semi-parametric approach is not best
in terms of SIMSEM or SIMSEV, its fit is highly competitive with the superior
approach. While the parametric and nonparametric methods are best in some
situations (parametric SIMSEM and SIMSEV values best when γµ = γσ = 0.00
and nonparametric SIMSEM values best when γµ ≥ 0.75), these methods are
noticeably inferior when there are small to moderate levels of misspecification.

6 Conclusions

The dual model response surface approach to RPD has been shown to work
well when the variance of response is not constant over the experimental re-
gion and can be successfully modeled using regression methods. One drawback,
however, is that optimization depends too heavily on the assumption of well
estimated models for the process mean and variance, and it is often the case
that user specified parametric models are not flexible enough to adequately
model the process mean and variance. VB and AP suggest the use of nonpara-
metric smoothing when the user is unable to specify the explicit forms for the
mean and/or variance functions. However, in small sample settings, which are
customary for response surface experiments, the nonparametric approach often
produces estimates that are highly variable. Consequently, we suggest a semi-
parametric approach, which combines the user’s specified parametric model with
a nonparametric fit, to provide better estimates of both the process mean and
variance.

Using the Box and Draper (1987) printing ink data to compare the para-
metric, nonparametric, and semi-parametric approaches, we find that the semi-
parametric approach performs best in terms of SEL. The optimization based on
the semi-parametric approach recommends control factor settings which result
in the estimated mean being closer to target as well as the smallest estimate
of process variance. As previously mentioned, confirmatory experiments are
necessary to prove which approach performs best for this example; however,
the semi-parametric approach produces better results than its parametric and
nonparametric counterparts previously seen in the literature.

To compare the three approaches more generally, a simulation study was
conducted. Variance model misspecification was observed to have little im-
pact on the quality of the estimated mean. If the user correctly specifies the
mean and variance models, the parametric approach is best with the semi-
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parametric method a close second. The nonparametric method, on the other
hand, is vastly inferior in terms of SIMSEM. The nonparametric method, while
best for large degrees of mean misspecification, is only slightly better than the
proposed semi-parametric approach. When the mean is misspecified, the para-
metric method is clearly inferior. For small to moderate mean misspecification,
the semi-parametric method is always superior. Since, in practice, one never
knows if the forms of the underlying models have been correctly specified, we
advocate a method that performs consistently well over all degrees of potential
misspecification. The semi-parametric method is the only one which consistently
performs well. The proposed semi-parametric approaches for mean and variance
modeling are easy to implement and the R code is available upon request from
the authors.
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Härdle, W., Müller, M., Sperlichm, S., Werwatz, A., 2004. Nonparametric and
Semiparametric Models. Springer, Berlin.

Haupt, R.L., Haupt, S.E., 2004. Practical Genetic Algorithms. Wiley, New York.

Holland, J., 1975. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor.

Lee, Y., Nelder, J.A., 2003. Robust design via generalized linear models. Journal
of Quality Technology 35, 2-12.

Lin, X., Carroll, R.J., 2000. Nonparametric function estimation for clustered
data when the predictor is measured without/with error. Journal of the Amer-
ican Statistical Association 95, 520-534.

Mays, J., Birch, J.B., Einsporn, R., 2000. An overview of model-robust regres-
sion. Journal of Statistical Computation and Simulation 66, 79-100.

Mays, J., Birch, J.B., Starnes, B.A., 2001. Model robust regression: combining
parametric, nonparametric, and semiparametric methods. Journal of Non-
parametric Statistics 13, 245-277.

Myers, R.H., Montgomery, D.C., 2002. Response Surface Methodology: Process
and Product Optimization Using Design Experiments, 2nd ed. Wiley, New
York.

Myers, W.R., Brenneman, W.A., Myers, R.H., 2005. A dual-response approach
to robust parameter design for a generalized linear model. Journal of Quality
Technology 37, 130-138.

Nadaraya, E., 1964. On estimating regression. Theory of Probability and Its
Applications 9, 141-142.

Priestley, M.B., Chao, M.T., 1972. Non-parametric function fitting. Journal of
the Royal Statistical Society Series B 34, 385-392.

Robinson, T.J., Birch, J.B., 2002. Dual model robust regression: robust to model
misspecification. Technical Report 02-2. Department of Statistics, Virginia
Polytechnic Institute & State University, Blacksburg, VA.

Ruppert, D., Wand, M.P., Carroll, R.J., 2003. Semiparametric Regression. Cam-
bridge University Press, Cambridge.

Simonoff, J.S., 1996. Smoothing Methods in Statistics. Springer-Verlag, New
York.

18



Vetterling, W.T., Teukolsky, S.A., Press, W.H., Flannery, B.P., 1992. Numeri-
cal Recipes: Example Book (Fortran), 2nd ed. Cambridge University Press,
Cambridge.

Vining, G.G., Bohn, L.L., 1998. Response surfaces for the mean and variance
using a nonparametric approach. Journal of Quality Technology 30, 282-291.

Vining, G.G., Myers, R.H., 1990. Combining Taguchi and response surface
philosophies: a dual response approach. Journal of Quality Technology 22,
38-45.

Watson, G., 1964. Smoothing regression analysis. Sankhya Series A 26, 359-372.

19



−1, 1

−1, −1

1, 1

1, −1

Figure 1: The 22 × 22 crossed array.
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Figure 2: Response surface for the true underlying means model when γµ =
0.00.
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Figure 3: Response surface for the means model when γµ = 0.25.
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Figure 4: Response surface for the means model when γµ = 0.50.
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Figure 5: Response surface for the means model when γµ = 0.75.
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Figure 6: Response surface for the means model when γµ = 1.00.
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Figure 7: Response surface for the true underlying variance model when γσ =
0.00.
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Figure 8: Response surface for the variance model when γσ = 0.25.
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Figure 9: Response surface for the variance model when γσ = 0.50.
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Figure 10: Response surface for the variance model when γσ = 0.75.
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Figure 11: Response surface for the variance model when γσ = 1.00.
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i x1i x2i x3i y1i y2i y3i ȳi si

1 -1 -1 -1 34 10 28 24.00 12.49
2 0 -1 -1 115 116 130 120.33 8.39
3 1 -1 -1 192 186 263 213.67 42.83
4 -1 0 -1 82 88 88 86.00 3.46
5 0 0 -1 44 178 188 136.67 80.41
6 1 0 -1 322 350 350 340.67 16.17
7 -1 1 -1 141 110 86 112.33 27.57
8 0 1 -1 259 251 259 256.33 4.62
9 1 1 -1 290 280 245 271.67 23.63

10 -1 -1 0 81 81 81 81.00 0.00
11 0 -1 0 90 122 93 101.67 17.67
12 1 -1 0 319 376 376 357.00 32.91
13 -1 0 0 180 180 154 171.33 15.01
14 0 0 0 372 372 372 372.00 0.00
15 1 0 0 541 568 396 501.67 92.50
16 -1 1 0 288 192 312 264.00 63.50
17 0 1 0 432 336 513 427.00 88.61
18 1 1 0 713 725 754 730.67 21.08
19 -1 -1 1 364 99 199 220.67 133.82
20 0 -1 1 232 221 266 239.67 23.46
21 1 -1 1 408 415 443 422.00 18.52
22 -1 0 1 182 233 182 199.00 29.44
23 0 0 1 507 515 434 485.33 44.64
24 1 0 1 846 535 640 673.67 158.21
25 -1 1 1 236 126 168 176.67 55.51
26 0 1 1 660 440 403 501.00 138.94
27 1 1 1 878 991 1161 1010.00 142.45

Table 1: The printing ink data.

Approach x1 x2 x3 Ê[yi] V̂ ar[yi] ŜEL
Parametric 1.000 0.358 -0.112 497.619 1723.693 1729.363

Nonparametric 1.000 1.000 -0.352 496.866 1088.455 1098.276
Semi-parametric 1.000 1.000 -0.522 497.629 1019.523 1025.150

Table 2: Comparison of the recommended optimal factor settings for the print-
ing ink data. Best values in bold.
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γµ γσ Parametric Nonparametric Semi-parametric
0.00 0.4335 7.9748 0.6151
0.25 0.4503 8.2321 0.6520

0.00 0.50 0.4806 8.4893 0.7148
0.75 0.5285 8.6231 0.8200
1.00 0.6001 8.6842 0.9801
0.00 11.7193 16.2605 11.1885
0.25 11.6521 16.3836 10.9981

0.25 0.50 11.6099 16.6595 10.8863
0.75 11.5983 17.1650 10.8326
1.00 11.9108 18.0681 11.1520
0.00 44.5181 42.9345 40.9599
0.25 44.4003 42.9855 40.4008

0.50 0.50 44.8819 43.4888 40.1894
0.75 44.8342 43.8464 39.9063
1.00 44.8238 45.4837 39.8345
0.00 98.8521 87.5581 90.1062
0.25 98.6950 87.5757 89.9734

0.75 0.50 98.5082 87.7151 87.9934
0.75 98.3134 88.2083 87.1736
1.00 98.1409 90.1727 86.6895
0.00 174.7138 150.1532 158.6082
0.25 174.5361 150.1094 156.7779

1.00 0.50 174.2771 150.2388 155.0822
0.75 175.6504 151.2052 154.1700
1.00 174.4280 153.0754 152.1491

Table 3: Simulated integrated mean squared error values for the means model
(SIMSEM) for 500 Monte Carlo runs. Best values in bold.

γσ Parametric Nonparametric Semi-parametric
0.00 17.9190 19.8901 19.5246
0.25 17.7432 19.8656 19.3408
0.50 20.0876 21.0396 19.9436
0.75 25.6025 23.6397 21.6610
1.00 35.5426 28.2999 25.6706

Table 4: Simulated integrated mean squared error values for the variance model
(SIMSEV) for 500 Monte Carlo runs. Best values in bold.
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