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Abstract

In modern quality engineering, dual response surface methodology is a powerful tool to

monitor an industrial process by using both the mean and the standard deviation of the

measurements as the responses. The least squares method in regression is often used to

estimate the coefficients in the mean and standard deviation models, and various decision

criteria are proposed by researchers to find the optimal conditions. Based on the inherent

hierarchical structure of the dual response problems, we propose a hierarchical Bayesian ap-

proach to model dual response surfaces. Such an approach is compared with two frequentist

least squares methods by using two real data sets and simulated data.

Key Words: Bayesian hierarchical model; dual response surface; off-line quality control;

genetic algorithm; optimization.

1 Introduction

Much of response surface methodology (RSM), particularly in the early years, was focused

on finding operating conditions that resulted in an optimum of the mean response with the

homogeneity assumption on the variances. During the last two decades, industrial statisti-

cians and practitioners have become aware that they can no longer focus themselves only
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on the expected value of the response of interest. Instead, the variability of the response

also needs to be considered. A common problem in an industrial process is to find the op-

erating condition that achieves the target value for the mean of a process characteristic and

minimizes the process variability. The pioneering work has been credited to Taguchi ([16]),

who developed a package of tools which were viewed unfavorably by many researchers and

practitioners for lack of statistical foundation (see [14]).

The dual response surface approach, first introduced by Myers and Carter ([13]) and

revitalized by Vining and Myers ([18]), suggests that the process characteristic and its process

variability form a dual response system (DRS), and two separate models are established for

the response and its variance. In statistics, this approach allows the use of all regression

tools to approximate the two response surfaces. In practice, the two separate models give

the analyst a more scientific understanding of the total process, and thus allow them to see

what levels of the control factors can lead to satisfactory values of the response as well as

the variance.

Like other optimization work in RSM, the dual response optimization problem also

consists of the following three stages. The first stage is to build an optimal experiment so

that the information among the responses and the control factors can be obtained efficiently.

The second stage is to build two models based on the data from the experiment, one for the

process characteristic and the other for the process variance. The last stage is to search for

the optimal operating condition throughout the region of interest under certain optimization

criterion based on the established models. The third stage results cannot be trusted if models

built in the second stage do not reflect the dual response surfaces well. The second stage is

the focus of this paper, and all work is done under the assumption that data have already

been collected. Model building efficiency is usually evaluated by comparing the performance

of a product or a process at the found operating conditions, therefore optimization criteria

and algorithms are inevitably involved.

Following Vining and Myers’ article ([18]), several optimization formulations and proce-

dures have been proposed for the DRS problem, for example, in Del Castillo and Montgomery

([5]), Lin and Tu ([10]), Copeland and Nelson ([3]), Ames et al. ([1]), Kim and Lin ([9]) and

Tang and Xu ([17]). The above optimization work is confined to the third stage and is car-

ried out under the assumption that the established models approximate the true response
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surfaces well. Therefore the accuracy of the optimization results largely relies on whether the

two established models are good approximations of the true dual response surfaces or not.

If the two estimated models fit the surfaces poorly, then the true response and its variance

at the chosen operating condition are very likely to be far from the specified requirement.

In this paper, a Bayesian hierarchical regression modelling approach is proposed to dual

response surface. The sample means are used as the response for the mean model and log-

normal distributions are assumed for the variances. The estimates of the coefficients in the

two models are based on the posterior inference. A hybrid of local optimization algorithms

and the genetic algorithm is adopted to search for the optimal operating conditions under

two common optimization criteria. In Section 2, the frequentist modelling approach initially

proposed by Vining and Myers ([18]) is briefly reviewed and the basic idea of the Bayesian

hierarchical model is sketched. Section 3 presents a brief introduction of the genetic al-

gorithm, discusses its advantages and disadvantages. Furthermore, a hybrid optimization

method is proposed. In Section 4, a Bayesian hierarchical model is developed and the associ-

ated computation issues are discussed. After the model development, the Bayesian approach

is compared with the frequentist methods in [18] by using two real data sets and simulated

data. The theoretical details of the Bayesian approach are placed in the Appendix.

2 Least Square Methods and

Bayesian Hierarchical Modelling

2.1 Review of the frequentist least square methods

Let x represent a k × 1 vector of independent factors under the experimenter’s control and

X an N × p matrix used in the model building, where N is the number of different design

locations and p is the number of coefficients in the model. If the model is of complete second-

order, the matrix X consists of the k coordinates of the design points plus the intercept, the

interaction terms and the quadratic terms. Suppose that the experimenter seeks to optimize

the process for x ∈ R where R is the region of interest (usually the experimental region).

Vining and Myers ([18]) built two full second order models for the sample mean and the
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sample standard deviation respectively:

y = Xβ + ε, and s = Xγ + η, (2.1)

where y is the vector of the sample means, s the vector of the sample standard deviations

at the design points, β and γ are the coefficient vectors to be estimated, and ε and η are the

error terms in their respective model.

The least squares method is a natural choice to estimate the coefficients for the dual

response models without any assumption on the distributions of the sample mean or the

sample standard deviation. Vining and Myers ([18]) mentioned that the generalized least

squares (GLS) method should be pursued to estimate β in order to take into account the

heterogeneity of variances in dual response problems:

β̂ = (X′V̂−1X)−1X′V̂−1y and γ̂ = (X′X)−1X′s,

where V̂ is the estimated covariance matrix of the mean responses obtained in the design. V̂

is diagonal with the assumption that the random errors are independent from design point

to design point. Due to computational difficulty, only ordinary least squares estimates were

calculated in their paper. The diagonal elements of V̂ can be obtained in two ways. One is

to use the sample variance at each design point. The other way is to use predicted values

obtained through the variance model, by which the information in the process variance model

can be incorporated into the mean response model. When the number of replicates is small,

the latter one is usually preferred.

One pitfall with the modelling approach in (2.1) is that it is possible to yield negative

predicted values of the standard deviation, even if the true mean standard deviations are

positive throughout the region of interest. If the response at a point with the negative

predicted standard deviation happened to be the optimum under certain criterion, it would

arise difficulty in explaining the process performance at the picked optimal point, and cause

confusion among the practitioners. Hence, we are trying to seek a more natural modelling

mechanism that would fit the dual response system well.
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2.2 Bayesian hierarchical modelling

Baysian hierarchical models mainly deal with data involving multiple parameters that can

be treated as related in certain way by the structure of the data. Suppose there are observed

data yij’s, where yij is the jth observation in the ith group. The vector θi (could be a scalar)

contains the parameter(s) to determine the distribution of yij in the ith group, and they are

believed to be connected with parameters φ. The parameters φ are at a higher level and are

called hyperparameters. Conditional on θi, the data yij’s are assumed to be independently

distributed, and given the hyperparameters φ, the parameters θi’s have the common density

π(θ|φ).

Nonhierarchical models are usually inappropriate for a data set with such a hierarchical

structure. If all yij’s are assumed to come from the same population distribution, the differ-

ence among the groups is inevitably neglected. If the uniqueness of each group needs to be

introduced into the model without using a hierarchical model, too many parameters have to

be entered into the model and the data will be overfitted. As a result, the estimated model

may fit the existing data well but will produce poor predictions for future observations.

What a Bayesian hierarchical model does is to express the relationship among the pa-

rameters θi’s with a prior distribution: θi’s are treated as variables and φ as the parameters

in the prior distribution of θi’s. In this way, the only unknown parameters in the model are

φ. Denote by π(θ, φ) the joint prior distribution of θ and φ, π(θ|φ) the conditional prior

distribution of θ given φ, and π(φ) the prior distribution of φ. Furthermore, let f(data|θ)
represent the probability density function of the data given θ, and π(θ, φ|data) the posterior

distribution of the parameters. The joint prior distribution of parameters can be expressed

as:

π(θ, φ) = π(θ|φ) · π(φ),

and the posterior distribution is:

π(θ, φ|data) ∝ f(data|θ, φ) · π(θ, φ) = f(data|θ) · π(θ|φ) · π(φ),

since f(data|θ, φ) depends only on θ, and the hyperparameters φ affect data only through θ.

The prior distribution facilitates the incorporation of subjective information into the analysis

of the current data set. If little is known about φ, a noninformative prior distribution can

be specified followed by a check on the propriety of the joint posterior distribution.
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Bayesian analysis is based on the posterior inference. Estimates of parameters are

usually summary statistics of the marginal posterior distributions, such as the posterior

mean, median, mode, standard deviation, etc. In simple nonhierarchical Bayesian models,

it is often easy to analytically derive the marginal posterior distributions and obtain the

summary statistics. However, in more complicated models, especially if the parameters are

of multiple dimensions, it is often hard or impossible to analytically express the marginal

distribution of each parameter. A common strategy is to use simulation techniques, such

as the MCMC Gibbs sampling ([15]), to generate observations for the marginal posterior

distributions and calculate the summary statistics numerically.

Bayesian hierarchical modelling of dual response surfaces is a natural application as the

hierarchical structure is a built-in property of dual response surface problems: the parameters

in the mean response model, including the variance, determine the distribution of the process

characteristic at each design point; and the distribution of that variance can be further

determined by the coefficients in the process variance model.

3 The Optimization Algorithm

In this paper, we use the combination of the genetic algorithm (GA) and the generalized

reduced gradient algorithm (GRG) to achieve dual response optimization. GRG is a widely

used local optimization algorithm in DRS and a detailed description can be found in Castillo

an Montgomery ([5]).

The genetic algorithm was pioneered by Holland ([7]), and applications of GA to prob-

lems of mathematical optimizations owe much to De Jong ([4]). Recently it has emerged as

an increasingly popular family of methods for global optimization, mainly because it offers a

simple way (for both continuous and discrete variables) to solve for near-global optimum even

for poorly behaved functions. GA is done by iteratively applying principles of “Darwinian

natural selection” to a population of computer representations of the solution domain. The

algorithm attempts to mimic the natural evolution of a population by allowing solutions to

reproduce, creating new solutions, and to compete for survival in the next iteration. Every

generation will have members that may not be an improvement over the previous generation

and far from the global optimum. After many generations (iterations), the best solution is
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usually near the global optimum.

Instead of the point-to-point search in the traditional methods, GA proceeds from one

population to another, and thus it sweeps through the parameter space in many directions

simultaneously and thereby reduce the probability of convergence to false optima. The

optimal locations resulting from GA are always close to each even for poorly behaved surfaces.

The main limitation is that, like other direct-search methods, convergence of the genetic

algorithm does not necessarily occur at a point where the gradient is exactly 0. That is, the

solution from GA does not guarantee the exact global optimum, but near global optimum. If

a very precise result is required, GA may suffer from excessively slow convergence because of

its fundamental requirement of neglecting the local information. However, GA will typically

find a point that is close enough to the optimum so that a gradient-type algorithm will

efficiently converge to the exact global optimum if the found location is used as the starting

point.

On the other hand, classical “hill-climbing” methods, such as the Quasi-Newton method

and GRG, are well known to exploit all local information in an efficient way, though they often

result in different local optima if different starting points are given. To take the advantages

of both types of the algorithms, we proceed the hybrid method to the optimization work:

GA is first used to find a near-global optimal point, and then the chosen point is served as

the starting point for GRG to work out the exact global optimum.

4 Bayesian Hierarchical Modelling in DRS

The Bayesian hierarchical model is suggested as a new approach to dual response surface.

The coefficients in the dual models can be estimated with some location parameters of the

posterior distributions. Consequently, the predicted mean and variance can be obtained at

any point within the design region.
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4.1 Notations and Assumptions

Let x represent a k × 1 vector of independent control factors, X an N × p matrix used in

the mean response model and Z an N × q matrix in the variance model, where N is the

number of distinct design points in the experiment, p and q are the numbers of parameters

in the mean and variance models respectively; and x′i, z′i are the respective row vectors

associated with the matrices X and Z for the ith location in the experiment. Denote by

Y = (y11, y12, . . . , y1n1 , y21, . . . , yNnN
)′ the vector of observations from the experiment, and

yij the jth response observed at the ith design point, where i = 1, 2, . . . , N and j = 1, 2, . . . , ni;

and the sample variance and population variance at the ith design point are denoted by s2
i

and σ2
i respectively. Furthermore, for all the parameters, β represents a p × 1 vector of

coefficients of the mean response model, γ a q × 1 vector of coefficients of the variance

response model, and δ2 the hyperparameter in the distribution of σ2
i ’s.

Note that X and Z are not necessarily the same, and quite often q is less than p as

variance models are usually simpler than mean response models.

We further assume independence among observations and parameters as follows:

• Independence among yij’s conditional on β and σ2
i ’s:

corr(yij, yi′j′|β, σ2
i , σ

2
i′) = 0, for either i 6= i′ or j 6= j′ or both.

• Independence among σ2
i ’s conditional on γ and δ2:

corr(σ2
i , σ

2
i′|γ, δ2) = 0, for i 6= i′.

• Independence among β, γ, and δ2 in the prior specification:

π(β, γ, δ2) = π(β) · π(γ) · π(δ2).

The independence among parameters assumption is made for simplicity, though it may

need to be modified in the presence of subjective information.

4.2 Model building

The Bayesian hierarchical model is built in the following three stages:
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• Stage 1 Since variances are assumed to be different at various locations in dual

response surface problems, a natural choice for the process characteristic is a het-

eroscedastic normal distribution conditional on β and the variance σ2
i at the ith loca-

tion:

yij|β, σ2
i ∼ N(x′iβ, σ2

i ), −∞ < yij < ∞, for i = 1, 2, . . . , N ; j = 1, 2, . . . , ni.

Hence the distribution of the sample mean at the ith location is N(x′iβ, σ2
i /ni).

• Stage 2 The logarithm transformation is a common technique used in variance mod-

elling. Bartlett and Kendall ([2]) used the logarithm of the sample variance as the

response for a linear regression model, and Engel and Huele ([6]) used the logarithm

of the residual squares. Similarly, in the Bayesian model, the variance σ2
i is assumed

to have a log-normal distribution conditional on γ and δ2:

ln σ2
i |γ, δ2 ∼ N(z′iγ, δ2) for i = 1, 2, . . . , N.

• Stage 3 Set the prior distributions for parameters, β, γ, and δ2. Informative priors are

always preferred if prior information with respect to parameters is available from pre-

vious studies or subjective knowledge. In choosing the form of the informative priors,

those from the conjugate family are of the most interest. The practical advantage of

using a conjugate prior distribution is that we know the posterior distribution follows

the same parametric form as of the prior distribution. However, due to the complexity

of the model we consider here, it is hard to find the real conjugate priors. Therefore the

commonly used prior distributions for such kind of parameters are assumed as follows:

π(β) ∼ MVNp(µβ
, Σβ), π(γ) ∼ MVNq(µγ

, Σγ), π(δ2) ∼ Inverse-Gamma(α, τ),

where µ
β
, Σβ, and µ

γ
, Σγ are the respective mean vectors and covariance matrices of

β and γ in the prior distributions, and α, τ are the shape and scale parameters of the

Inverse-Gamma distribution, respectively.

If information available is in the form apparently not belonging to the conjugate family,

we need to elicit more realistic prior distributions to incorporate such information.

However, if there is no subjective information, noninformative priors could be used.
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As discusses in Section 2.2, if the marginal posterior distributions of the parameters of

interest cannot be analytically expressed, simulation techniques such as the MCMC Gibbs

sampling method may be used. To use the Gibbs sampling technique, the joint posterior

distribution and full conditional posterior distributions for using the above conventional prior

distributions and noninformative distributions are derived and proved in Appendix A.

For a dual response surface problem without any subjective information on parameters,

the following independent prior distributions can be used:

π(β) ∝ 1 π(γ) ∝ 1 π(δ2) ∝ 1

δ2
exp(− λ

δ2
),

where λ is a small positive number. The joint and conditional posterior distributions by

using the above noninformative priors are derived in Appendix B. The propriety of the

posterior distribution by using these improper priors are discussed in Appendix C.

4.3 Computation

The Gibbs sampler is used in the posterior simulation. Based on Theorem A.2 and Corollary

B.2, the full posterior conditional distributions of β, γ and δ2 can be generated directly but

the distributions of σ2
i ’s are uncommon, so the rejection method (e.g. see [15]) is used.

To simulate observations for the desired density f(x) with the rejection method, we have

two requirements: first, a well-known density g(x) that we can easily generate observations

from; and second, the ratio between f(x) and g(x) must have an upper bound M . The

basic rejection method is to generate an observation from g(x) first, and then compare the

value f(x)
Mg(x)

with a uniform variate ν, where ν ∼ U(0, 1), to decide whether the observation

is accepted or not. The desired density f(x) is often called the target density, and g(x) is

called the instrumental density.

The target density to be simulated is π(σ2
i |others) in Corollary B.2 and the instrumental

density proposed is:

g(σ2
i ) ∼ Inverse-Gamma

(
ni

2
,
(ni − 1)s2

i + ni(ȳi − x′iβ)2

2

)
.

The ratio between the target density and the instrumental density is

Ri =
π(σ2

i |others)

g(σ2
i )

∝ exp

[
− 1

2δ2
(ln σ2

i − z′iγ)2

]
for i = 1, 2, . . . , N.
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When σ2
i = exp{z′iγ} , the ratio Ri achieves its maximum, which is the ratio between the

normalizing constants of the target density and the instrumental density.

It is expected that adding a small value of λ should exert no influence on the conditional

posterior distributions of β, γ, δ2 and σ2
i ’s. Usually 1

2
(d−Zγ)′(d−Zγ) is very large relative

to λ if λ is chosen to be tiny, so the conditional posterior distribution of δ2 is little affected,

and the whole simulation procedure remains almost unchanged. The printing ink data and

the catapult data in Section 5 are used for sensitivity analysis to study the effect of changing

λ on the optimal locations found. λ = 0.1, 0.001, and 10−6 are tried, and it is found that

the predicted performance at the chosen locations is fairly robust to the choice of λ (refer to

Tables 1 and 2 in Sections 5.1 and 5.2, respectively).

5 Methods Comparison

In this section, the proposed Bayesian hierarchical model (henceforth referred as BAYES) is

applied to two data sets. The coefficients in the two models, β and γ, are estimated with their

respective posterior medians. Posterior medians are preferred over the posterior means for

their robustness to outliers. The optimization results from the Bayesian model are compared

with the two frequentist least squares methods in [18]: one is to model the mean and standard

deviation with linear regressions and estimate both sets of parameters with ordinary least

squares (OOLS); and the other is similar to OOLS except that the mean response models

coefficients are estimated with generalized least squares (GOLS). Furthermore, simulation is

used to assess the modelling efficiency of each method by comparing the performance at the

chosen optimal operating conditions.

To compare the optimization result from each model, optimal operating conditions are

searched under two criteria in the literature. The first one, proposed by Vining and Myers

([18]), strictly sets the mean response at the target value, and then minimizes the variability

subject to this constraint (henceforth referred to as “target is the best” criterion). The

second one, proposed by Lin and Tu ([10]), minimizes the sum of deviance around the target

value and the variability. This measure is defined as (mean − target)2 + variance, which is

very similar to the definition of the mean squared error (MSE criterion).
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5.1 Printing Ink Data

Box and Draper (1987) outlined an experiment involving printing ink, which has been widely

adopted in dual response surface analysis for illustration (e.g. see [1], [3] and [9]). The

purpose of the experiment was to study the effects of speed (x1), pressure (x2), and distance

(x3), upon a printing machine’s ability to apply coloring inks upon package labels. The

original experiment used a 33 complete factorial design with three runs at each design point

for a total of 81 runs. All previous analyses considered the situation that we wish to minimize

the process variability around a target value of 500 for the response. The same situation is

considered in this paper. Since the experimental region is cuboidal with each factor taking

values at −1, 0, 1, optimal conditions are searched throughout the cuboidal region.

Vining and Myers ([18]) assumed full second order models for both the mean and vari-

ance models so that the dual response optimization algorithm in Myers and Carter ([13])

could be carried out. All subsequent analyses on this data set has been done based on this

assumption, though some authors have pointed out that the assumption of two full second

order models does not necessarily hold (e.g. see [10]). In this paper, we will still stick to this

assumption, i.e., the model matrices X and Z are identical, both containing columns for the

intercept, linear terms, quadratic terms and cross product terms in order.

Optimization results from the three models are displayed in Table 1. In Table 1, xa

denotes the optimal location found under the “target is the best” criterion, and µ̂a, σ̂2
a,

and M̂SEa are respectively the estimated mean, variance and MSE at the location xa.

Similarly, notations µ̂b, σ̂2
b and M̂SEb are for the results found under the MSE criterion.

These subscripts will also be used for in Table 2.

Though the only difference between the OOLS and GOLS models is in the estimation of

β, the optimal operating conditions picked using the two methods are not close to each other

and the predicted means, variances, and MSEs also differ greatly. This may cause confusion

among the practitioners on which point should be viewed as “optimal”. On the other hand,

the optimal locations picked out using the Bayesian hierarchical methods for different small

values of λ are very close to each other, and their respective predicted performances (such

as predicted means, variances and MSEs) are quite similar.
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Table 1: Optimization results comparison for the printing ink data

Models OOLS GOLS
BAYES

λ = 10−1 λ = 10−3 λ = 10−6

(1.0000, (1.0000, (0.4788, (0.4769, (0.4757,

x̂a 0.1163, 0.7189 0.1695, 0.1729, 0.1759,

-0.2584) -0.4484) 0.1002) 0.0984) 0.0975)

µ̂a 500 500 500 500 500

σ̂2
a = M̂SEa 2034.4 2494.7 27.824 28.472 28.536

(1.000, (1.0000, (0.4783, (0.4765, (0.4753,

x̂b 0.0715, 0.5537, 0.1695, 0.1726, 0.1757,

-0.2503) -0.3864) 0.0998) 0.0981) 0.0972)

µ̂b 494.672 493.036 499.845 499.833 499.840

σ̂2
b 1977.6 2421.6 27.783 28.416 28.483

M̂SEb 2005.9 2470.0 27.808 28.444 28.508

5.2 Catapult Data

The catapult data is from a Roman-style catapult experiment, first adopted by Luner ([11])

to illustrate for teaching purpose the use of RSM in quality improvement. The requirement

for the catapult performance is that it must throw projectiles a distance of 80 inches with a

high degree of precision. Based on the knowledge of the catapult production process, three

factors, arm length (x1), full stop angle (x2), and pivot height(x3), are included as potential

significant factors to catapult performance. A complete randomized central composite design

(CCD) is carried out: 8 factorial points and 6 axial points with 3 replicates as each point,

and 18 replicates at the central point. The response y is defined as the distance, in inches,

from the base of the catapult to the place where the projectile reaches the ground.

As in the previous analysis, full second order models are assumed for both the mean

and the variance in each method in the analysis of the catapult data. Optimal points, x0’s,

are searched under the two optimization criteria used for the printing ink data over the

spherical region, x′0x0 ≤ 3, since the design region is almost spherical. Table 2 summarizes

the optimization results from the three methods. For this data, the optimal points found

using the OOLS and GOLS methods are not as different as those in the printing ink data
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set, and their predicted performances are much closer. The results from the BAYES method

by using three different λ values are still very similar to each other.

Table 2: Optimization results comparison for the catapult data

Models OOLS GOLS
BAYES

λ = 10−1 λ = 10−3 λ = 10−6

(0.0420, (0.0435, (-0.0616, (-0.0573, (-0.0618,

x̂a -0.2742, -0.2829 -0.2285, -0.2177, -0.2427,

-0.2394) -0.2227) -0.2302) -0.2345) -0.2263)

µ̂a 80 80 80 80 80

σ̂2
a = ˆMSEa 5.308 5.449 13.867 14.572 13.744

(0.0595, (0.0611, (-0.0451, (-0.0443, (-0.0430,

x̂b -0.2741, -0.2815, -0.1820, -0.1669, -0.1947,

-0.2633) -0.2473) -0.2007) -0.2067) -0.1974)

µ̂b 79.760 79.756 80.822 79.831 79.833

σ̂2
b 5.070 5.210 14.167 14.167 14.100

ˆMSEb 5.127 5.270 14.842 14.195 14.128

6 Simulation Studies

Note that all the values of means, variances and MSEs in Tables 1 and 2 are predicted

values given by the estimated models, and the locations suggested by each model are only

optimal to the extent that the fitted model is correct. Therefore those values give us no

reason to prefer one method to the others, as the true nature of the data sets is unknown

to us. To assess the performance of each modelling approach, simulated data sets should be

analyzed.

We use the following three different scenarios to do simulation:

• Constant variance:

yij ∼ N(x′iβ, 1), for i = 1, 2, . . . , N, j = 1, 2, . . . , nj;
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• Nonconstant variance where the standard deviation follows a normal distribution (re-

ferred to as Nonconstant Stdev):

yij ∼ N(x′iβ, σ2
i ), σi ∼ N(z′iγ, η2), for i = 1, 2, . . . , N, j = 1, 2, . . . , nj.

In generating the standard deviation, the minimum mean standard deviation over the

experimental region is set to be much larger than η, so that the simulated standard

deviation has little likelihood to be negative;

• Nonconstant variance where the variance follows a log-normal distribution (referred to

as Nonconstant Logvar):

yij ∼ N(x′iβ, σ2
i ), σ2

i ∼ Log-Normal(z′iγ, η2), for i = 1, 2, . . . , N, j = 1, 2, . . . , nj.

Since full second order models are assumed for both the mean and variance models

in previous analyses, x′i and z′i will be set as identical in the simulation, both containing

the intercept, linear terms, quadratic terms and interactions in order. For each scenario,

2500 data sets are generated from a 33 (N = 27) factorial design with 3 replicates (ni =

3, for i = 1, 2, . . . , 27) at each design point. The simulation size is determined such that

the largest standard error of the mean efficiency is less than 0.005. Each method builds two

full second order models for the mean and variance surfaces and optimal points are searched

over the cuboidal region (−1 < x1, x2, x3 < 1), under the MSE criterion. For the BAYES

model, λ = 0.001 is assumed in the prior distribution of δ2 for the simulation studies as it

has been shown that the effect of λ is almost negligible in the analysis for the two real data

sets.

The relative efficiency based on the MSE criterion is introduced as a single-number

measure of performance to see how well a model does in choosing “good” points overall. It

is defined as the ratio between the true model’s minimum MSE and the true model’s MSE

at the point proposed by that modelling approach:

relative efficiency =
minMSEtrue

MSEpoint proposed
.

If the operating condition picked by a model performs closely to the true optimum, i.e., the

relative efficiency is very near to 1, then the model is viewed as good. If the relative efficiency

of a model is very small, that means the model picks a point far from optimum.
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Table 3: Comparison of the relative efficiencies between the three methods using simulated

Data. Simulation size is 2500 for each scenario. It is determined so that the largest standard

error of the mean relative efficiency is less than 0.005.

Models Constant Variance Nonconstant Stdev Nonconstant Logvar

Mean Median Stdev Mean Median Stdev Mean Median Stdev

OOLS 0.9201 0.9561 0.0959 0.7714 0.8181 0.1693 0.5423 0.5500 0.2412

GOLS 0.9182 0.9552 0.0986 0.7695 0.8156 0.1707 0.5425 0.5463 0.2403

BAYES 0.9084 0.9484 0.1079 0.7693 0.8025 0.1642 0.7893 0.8337 0.1834

Table 3 gives numerical summaries of the relative efficiencies. When the variance is

constant over the region of interest, all three methods do a good job, with the medians and

means of the relative efficiency above 0.90. As the variance structure becomes complicated,

their performances degrade differently. In the Nonconstant Stdev case, the results using

three methods are not as good as those in the constant variance case but their performances

are still fairly comparable. When the true variance has the logarithm structure, the BAYES

model stands out among the three with the largest mean, median and the smallest variance

of the relative efficiency. Case-wise speaking, the performance of the BAYES model is much

more stable than the two least squares methods as the its performance does not decrease

as dramatically as the OOLS and GOLS models when the variance structure becomes more

complicated. Since in dual response surface problems the variance is assumed to be non-

constant, the performance under the latter two scenarios should be given more emphasis.

Based on the simulation studies on the two nonconstant variance cases, the BAYES model

is recommended.

7 Summary and Conclusion

In the literature of dual response surface, much work has been devoted into the improvement

of optimization criterion, the optimization algorithms and implementations. However, if the

models established do not fit the true response surfaces well, then the optimization results

based on the modelling are not trustworthy.
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This paper is to develop a Bayesian hierarchical model for dual response system and

assess its performance by comparing it to the two existing frequentist methods. From the

studies on the literature data sets and the simulated data, it is shown that the results from

the two frequentist methods are not stable: in the real data analysis, the two methods

pick two optimal locations far away from each other under the same optimization criterion;

in simulation studies, when the true variances have the logarithm structure, the relative

efficiencies are only about 0.5. Contrary to the instability of the two least squares methods,

the BAYES model keeps performing well in both the real data analysis and the simulation

studies. The consistent performance of the BAYES model excludes ambiguity in parameter

estimation. The analysts can simply choose the posterior medians as the estimates for the

parameters.

In practice, the BAYES model retains the advantages when the dual response approach

was initiated: they have two separate estimated models which allow them to monitor both

the mean characteristic and the process variability. They can make any necessary adjust-

ment and compromise as they have done under the frequentist models. Another advantage

that the Bayesian approach possesses over the frequentist approach is in incorporating prior

information from the previous studies into the current data analysis, which accords with the

sequentiality nature of most response surface problems (e.g. see Myers and Montegomery

[12]). Moreover, as the Bayesian methodology works with the probability distributions, it

can be given the predictive distribution of the response at any point within the region of in-

terest. Thus the analysts will be given a more comprehensive view of the response of interest

rather than merely the mean and the variance. This would be of future research interest.

APPENDIX

A Posterior distributions

(conventional informative priors)

Theorem A.1. Suppose yij|β, σ2
i ∼ N(x′iβ, σ2

i ) and ln σ2
i |γ, δ2 ∼ N(z′iγ, δ2). The following

prior distributions are assumed for β, γ, and δ2:

π(β) ∼ MVNp(µβ
, Σβ), π(γ) ∼ MVNq(µγ

, Σγ), π(δ2) ∼ Inverse-Gamma(α, τ),
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where µ
β
, Σβ, µ

γ
, Σγ, α, and τ are the respective mean vectors and covariance matri-

ces of β and γ in the prior distributions, and α, τ are the shape and scale parameters

of the Inverse-Gamma distribution, respectively. Then the joint posterior distribution of

(β, γ, σ2
1, . . . , σ

2
N , δ2) is:

π(β, γ, σ2
1, . . . , σ

2
N , δ2|Y )

∝ 1

(δ2)N/2+α+1|Σβ|1/2|Σγ|1/2
∏N

i=1(σ
2
i )

ni/2+1
exp

[
−

N∑
i=1

(ni − 1)s2
i + ni(ȳi − x′iβ)2

2σ2
i

]

× exp

[
− 1

2δ2
(d− Zγ)′(d− Zγ)− 1

2
(β − µ

β
)′Σ−1

β (β − µ
β
)− 1

2
(γ − µ

γ
)′Σ−1

γ (γ − µ
γ
)− τ

δ2

]
,

where d = (d1, d2, . . . , dN)′ = (ln σ2
1, ln σ2

2, . . . , ln σ2
N)′.

Proof. The joint posterior distribution is proportional to the product of the probability

density of the data Y and all the prior distributions since independence among observations

and parameters is assumed in Section 4.1.

The probability density of Y conditional on β and (σ2
1, σ

2
2, . . . , σ

2
N) is:

f(Y |β, σ2
1, . . . , σ

2
N) =

N∏
i=1

1

(2πσ2
i )

ni/2
exp

[
−

∑ni

j=1(yij − x′iβ)2

2σ2
i

]
.

The probability density function of σ2
i given γ and δ2 is:

f(σ2
i |γ, δ2) =

1

σ2
i

√
2πδ2

exp

[
−1

2
(ln σ2

i − z′iγ)2

]
.

The product of the above conditional distributions and the assumed prior distributions on

β, γ, and δ2 yield the joint posterior distribution of (β, γ, σ2
1, . . . , σ

2
N , δ2).

Theorem A.2. Suppose we have the same assumptions as in Theorem A.1. Let Ȳ be the

vector of sample means at design points, Ȳ = (ȳ1, ȳ2, . . . , ȳN)′, V the variance covariance
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matrix for Ȳ , and t = (t1, t2, . . . , tN)′. The full conditional posterior distributions are:

π(β|others) ∼ MVNp

(
(X ′V −1X + Σ−1

β )−1(X ′V −1Ȳ + Σ−1
β µ

β
), (X ′V −1X + Σ−1

β )−1
)

,

π(γ|others) ∼ MVNq

(
(Z ′Z/δ2 + Σ−1

γ )−1(Z ′d/δ2 + Σ−1
γ µ

γ
), (Z ′Z/δ2 + Σ−1

γ )−1
)

,

π(δ2|others) ∼ Inverse-Gamma

(
N/2 + α,

(d− Zγ)′(d− Zγ) + 2τ

2

)
,

π(σ2
i |others) ∝ 1

(σ2
i )

ni/2+1
exp

{
− 1

2σ2
i

[(ni − 1)s2
i + ni(ȳi − x′iβ)2]− 1

2δ2
(ln σ2

i − z′iγ)2

}
,

for i = 1, 2, . . . , N.

Proof. To derive the conditional posterior distribution for certain variable(s), we simply

keep terms involving the variable(s) of interest, and remove the other terms from the joint

posterior distributions.

B Posterior distributions (noninformative priors)

Corollary B.1. Suppose yij|β, σ2
i ∼ N(x′iβ, σ2

i ) and ln σ2
i |γ, δ2 ∼ N(z′iγ, δ2). In the absence

of historical information, the following prior distributions are assumed for β, γ, and δ2:

π(β) ∝ 1 π(γ) ∝ 1 π(δ2) ∝ 1

δ2
exp(− λ

δ2
),

where λ is a small positive number. Then the joint posterior distribution of (β, γ, σ2
1, . . . , σ

2
N , δ2)

is:

π(β, γ, σ2
1, . . . , σ

2
N , δ2|Y )

∝ 1

(δ2)N/2+1
∏N

i=1(σ
2
i )

ni/2+1
exp

[
−

N∑
i=1

(ni − 1)s2
i + ni(ȳi − x′iβ)2

2σ2
i

− (d− Zγ)′(d− Zγ) + 2λ

2δ2

]
.

Corollary B.2. Suppose we have the same assumptions as in Corollary B.1. The full
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conditional posterior distributions are:

π(β|others) ∼ MVNp((X
′V −1X)−1X ′V −1Ȳ , (X ′V −1X)−1),

π(γ|others) ∼ MVNq((Z
′Z)−1Z ′d, (Z ′Z)−1δ2),

π(δ2|others) ∼ Inverse-Gamma

(
N

2
,
(d− Zγ)′(d− Zγ) + 2λ

2

)
,

π(σ2
i |others) ∝ 1

(σ2
i )

ni/2+1
exp

{
− 1

2σ2
i

[(ni − 1)s2
i + ni(ȳi − x′iβ)2]− 1

2δ2
(ln σ2

i − z′iγ)2

}
,

for i = 1, 2, . . . , N.

Both Corollaries can be proven easily by using Theorems A.1 and A.2.

C Propriety of the posterior distributions

(noninformative priors)

Theorem C.1. Let Ωm×m be a real symmetric positive definite matrix having eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λm with associated orthonormal (m× 1) eigenvectors v1, v2, · · · , vm. Then

min{det(B′ΩB) : Bm×n real, B′B = In} = λ1λ2 · · ·λn,

where B = [v1, v2, · · · , vn].

Theorem C.1 and its proof can be found in Horn and Johnson [8]. It is used in the fol-

lowing to show that the posterior distribution by using the noninformative priors in Corollary

B.1 is proper when the numbers of replicates at design points, ni’s are all greater than 1.

Theorem C.2. Suppose we have the same assumptions as in Corollary B.1. Then the

posterior distribution of (β, γ, σ2
1, . . . , σ

2
N , δ2) is proper when ni > 1 for i = 1, 2, . . . , N .

Proof. Suppose the mean model matrix X is of full row rank p, then X ′X is an p × p

symmetric matrix with corresponding eigenvalues λ1, λ2, · · · , λp and normalized eigenvectors

c1, c2, · · · , cp. With spectral decomposition, X ′X can be expressed as

X ′X = CΛC ′ (C.2)
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where Λ = diag{λi}, a diagonal matrix with λi as the ith element, and C is the orthogonal

matrix C = (c1, c2, · · · , cp). Since C ′C = Ip, (C.2) can be written as

C ′X ′XC = Λ,

and then

Λ−
1
2 C ′X ′XCΛ−

1
2 = B′B = Ip, (C.3)

where B = XCΛ−
1
2 and Λ−

1
2 = diag{λ−

1
2

i }.

It is known from Corollary B.1 that the joint posterior distribution of (β, γ, σ2
1, . . . , σ

2
N , δ2)

is:

π(β, γ, σ2
1, . . . , σ

2
N , δ2|Y )

∝ 1

(δ2)N/2+1
∏N

i=1(σ
2
i )

ni/2+1
exp

[
−

N∑
i=1

(ni − 1)s2
i + ni(ȳi − x′iβ)2

2σ2
i

− (d− Zγ)′(d− Zγ) + 2λ

2δ2

]
.

After integrating over γ, δ2 and β, we have

π(σ2
1, . . . , σ

2
N |Y ) =

C1

|X ′D−1X|1/2[d′(I −Mz)d + 2λ]
N−q

2

∏N
i=1(σ

2
i )

ni/2+1

× exp

[
−

N∑
i=1

(ni − 1)s2
i

2σ2
i

− 1

2
Y
′
(D−1 −Mx,D)Y

]
,

where Mz = Z(Z ′Z)−1Z ′, Mx,D = D−1X(X ′D−1X)−1X ′D−1 and C1 is the normalizing

constant in the marginal posterior distribution of (σ2
1, . . . , σ

2
N).

Since both (I − Mz) and (D−1 − Mx,D) are positive semidefinite, d′(I − Mz)d and

Y
′
(D−1 −Mx,D)Y are nonnegative, therefore

π(σ2
1, . . . , σ

2
N |Y ) ≤ C1C2

|X ′D−1X|1/2
∏N

i=1(σ
2
i )

ni/2+1
exp

[
−

N∑
i=1

(ni − 1)s2
i

2σ2
i

]
, (C.4)

where C2 = (2λ)
N−q

2 . Let

1

ηi

=
(ni − 1)s2

i

σ2
i

, for i = 1, 2, · · · , N.

Order η’s such that

η(1) ≥ η(2) ≥ · · · ≥ η(N) and
1

η(1)

≤ 1

η(2)

≤ · · · ≤ 1

η(N)

.
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Then

X ′D−1X = X ′diag{ni

σ2
i

}X = X ′diag

{
ni

(ni − 1)s2
i ηi

}
X

=

(
diag

{√
ni

(ni − 1)s2
i

}
X

)′
diag

{
1

ηi

}(
diag

{√
ni

(ni − 1)s2
i

}
X

)
.

Suppose the diagonal matrix Λ = diag{λi} consists of the eigenvalues of the sym-

metric matrix

(
diag

{√
ni

(ni−1)s2
i

}
X

)′ (
diag

{√
ni

(ni−1)s2
i

}
X

)
, and the orthogonal matrix

P = (p1, p2, · · · , pN) contains the corresponding normalized eigenvectors. Take the determi-

nant of X ′D−1X:

|X ′D−1X| =

∣∣∣∣
(

diag

{√
ni

(ni − 1)s2
i

}
X

)′
diag

{
1

ηi

}(
diag

{√
ni

(ni − 1)s2
i

}
X

)∣∣∣∣

= |Λ| · |Λ−1/2| · |P ′| ·
∣∣∣∣X ′

∗diag

{
1

ηi

}
X∗

∣∣∣∣ · |P | · |Λ−1/2|

= |Λ| ·
∣∣∣∣Λ−1/2P ′X ′

∗diag

{
1

ηi

}
X∗PΛ−1/2

∣∣∣∣ = |Λ| ·
∣∣∣∣U ′diag

{
1

ηi

}
U

∣∣∣∣ ,

where X∗ = diag

{√
ni

(ni−1)s2
i

}
X, and U = X∗PΛ−1/2. With (C.3), it is known that

U ′U = Λ−1/2P ′X ′
∗X∗PΛ−1/2 = I. Use Theorem C.1:

|X ′D−1X|1/2 = |Λ|1/2 ·
∣∣∣∣U ′diag

{
1

ηi

}
U

∣∣∣∣ ≥ |Λ|1/2 ·
p∏

i=1

1

η(i)

.

Let f ∗(σ2
1, · · · , σ2

N) denote the right side of (C.4), then

f ∗(σ2
1, · · · , σ2

N) ≤ C1C2C3(∏p
i=1

1
η(i)

)1/2 (∏N
i=1 η

ni/2+1
i

) exp

(
−

N∑
i=1

1

2ηi

)

=
C1C2C3(∏N

i=p+1 η(i)

)1/2 (∏N
i=1 η

(ni+1)/2
i

) exp

(
−

N∑
i=1

1

2ηi

)
, (C.5)

where C3 =
∏N

i=1[(ni − 1)s2
i ]

ni/2+1/|Λ|1/2.

Break the exponential form exp
(
−∑N

i=1
1

2ηi

)
into two parts and write one of them in
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terms of order statistics η(i), then the right hand side of (C.5) becomes:

C1C2C3 · 1∏N
i=p+1 η

1/2
(i)

exp

(
−

N∑
i=1

1

4η(i)

)
· 1∏N

i=1 η
(ni+1)/2
i

exp

(
−

N∑
i=1

1

4ηi

)

≤ C1C2C3 · 1∏N
i=p+1 η

1/2
(i)

exp

(
−

N∑
i=p+1

1

4η(i)

)
· 1∏N

i=1 η
(ni+1)/2
i

exp

(
−

N∑
i=1

1

4ηi

)

≤ (2e−1/2)N−pC1C2C3 · 1∏N
i=1 η

(ni+1)/2
i

exp

(
−

N∑
i=1

1

4ηi

)
, (C.6)

since max
(

1
η(i)

exp(− 1
4η(i)

)
)

= 4e−1 for any i.

The right hand side of (C.6) is integrable when all ni’s are greater than 1, therefore the

posterior distribution is also integrable and thus proper.
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