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Abstract

Approaches for meaningful regressor construction in the linear prediction problem are inves-

tigated in a framework similar to partial least squares and continuum regression, but weighted to

allow for intelligent specification of an evaluative scheme. A cross-validatory continuum regres-

sion procedure is proposed, and shown to compare well with ordinary continuum regression in

empirical demonstrations. Similar procedures are formulated from model-based constructive cri-

teria, but are shown to be severely limited in their potential to enhance predictive performance.

By paying careful attention to the interpretability of the proposed methods, the paper addresses

a long-standing criticism that the current methodology relies on arbitrary mechanisms.

KEY WORDS: linear prediction; principal components regression; partial least squares regres-

sion; continuum regression; weighted cross-validation

1 Introduction

Continuum regression (CR; Stone and Brooks, 1990) and its antecedents, partial least squares

(PLS; Wold, 1975) and principal components regression (PCR; Massy, 1965), were developed
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for linear prediction problems as regressor construction techniques aiming to enhance predictive

performance. They have been used widely in scientific applications, especially in chemomet-

rics, where the number of explanatory variables is often large, but also in general regression

applications involving colinear data. Stone and Brooks (1990) argue for CR’s particular rele-

vance to “elastic” science, falling somewhere between “hardened” science, which involves a true,

believable model, and “soft” science, which allows and sometimes relies on ad hoc data manipu-

lation. On an empirical level, the methods have performed satisfactorily in many such scenarios,

and they remain popular analysis tools. We will refer to them collectively as regularization by

dimension reduction (RDR) methods.

The RDR setup was first proposed algorithmically, motivated largely on heuristic arguments

loosely connected with standard statistical thinking. More recently, the statistical properties of

established RDR procedures have been studied in Helland (1988), Frank and Friedman (1993),

Sundberg (1993), and Björkström and Sundberg (1996, 1999), among others. Comparing CR to

ridge regression (RR; Hoerl and Kennard, 1970), Sundberg (1993) suggests CR may serve as a

means of stabilizing colinearity without subscribing to “shrinkage in principle,” referring to the

decision-theoretic objective of reducing mean squared error, which is often associated with RR.

Despite established theory for some aspects of CR and PLS, and empirical evidence of

their efficacy, some important criticisms have fueled controversy over their use in practice.

Questions remain over the statistical justification for the constructive mechanisms used in CR

and PLS, leading many to view the methodology as a form of pseudo-statistics that works

by “maximizing some arbitrary criterion” (Fearn, 1990; see also Brown, 1993). The initial

impetus for this investigation was to explore alternative RDR formulations that are justified

statistically either through: (i.) matching the criterion used to construct regressors with that

used to evaluate predictive performance; or (ii.) constructing regressors via a formal model,

such as the Bayesian model of Frank and Friedman (1993). In doing so, approach (i.) leads to a

working RDR technique, which uses cross-validation in a novel way to form a “cross-validatory

continuum.” Its empirical performance compares well with existing RDR methods, and, in our
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view, is more closely tied to the problem of prediction than are CR and PLS. The technique

makes a substantial contribution to the methodology by admitting weighted predictive criteria,

which permits analyses to carry forward according to the non-arbitrary specifications of the

analyst. Taking approach (ii.), it is shown that the most common model-based mechanisms,

when adapted to the RDR problem, are hampered by a type of singularity that severely limits

their ability to enhance predictive performance. This phenomenon is understood by connecting

RDR to RR through its constructive mechanisms, which is a different sort of connection than

has been noted (and exploited) by other authors.

The paper is organized as follows. The linear prediction problem and framework for RDR

is laid out in the remainder of this section. RDR by constructive cross-validation is described

in Section 2, and demonstrated on existing data sets. Model-based RDR is described and

investigated in Section 3. Further discussion and conclusions appear in Section 4.

1.1 Linear prediction

The linear prediction problem seeks to build a formula

Ŷ0 = Ȳ + (x0 − x̄)T β̂, (1)

for predicting a univariate response Y0 on the basis of a given p-dimensional vector of explanatory

measurements x0. The formula is to be derived from an observed vector of univariate responses,

Y = [Y1, . . . , Yn]T and associated vectors of explanatory measurements, which are collected into

the n × p design matrix X = [x1, . . . , xn]T . The means Ȳ = n−1
∑

Yi and x̄ = n−1
∑

xi set

baseline levels and β̂, the driving object in (1), determines the manner in which Y0 is explained

by x0. We will assume an initial preprocessing step of centering and scaling, by which Ȳ = 0,

x̄ = 0, and the columns of X have a common sum of squares. As in many applications, p > n

is allowed, but we will assume the rank of X is p0 = min(n− 1, p).

The vector β̂ is to be calculated from the form

β̂ = Rm(RT
mV Rm)−1RT

mXT Y, (2)
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where V = XT X and Rm is some p × m matrix with linearly independent columns. One

should recognize β̂ as Rm times the least squares coefficients for Y regressed on a “constructed”

regressor matrix XRm. We will refer to Rm as a “regression components matrix,” and the

integer m as the “dimension” of the prediction formula. Helland (1988) deduces (2) explicitly

from the original algorithmic definition of PLS.

It is helpful the think of Rm as the first m columns of a larger p× p0 regression components

matrix R = [Rm R−m]. The first step in RDR is to construct the full matrix R, after which

cross-validation is applied to select Rm. This perspective implies the restriction m ≤ p0.

1.2 Regressor construction

In CR, R is constructed column-by-column, with the m’th column calculated recursively as the

rm which maximizes

CRm,α = (rT
mXT Y )2(rT

mV rm)α/(1−α)−1, (3)

subject to the normalization ‖rm‖ = 1 and the orthogonality constraint rT
j V rm = 0 for j =

1, ...,m − 1. In the full CR procedure, the index α is allowed to take any value in 0 ≤ α < 1,

and is selected data-dependently by cross-validation. At fixed values, α = 0 defines ordinary

least squares (OLS), α = 1/2 defines PLS, and β̂ tends to a PCR estimator as α tends to 1.

Frank and Friedman (1993), Sundberg (1993), and Björkström and Sundberg (1996, 1999)

observe that at m = 1 the regression component maximizing (3) takes the form r1 ∝ (V +

δI)−1XT Y , the core expression of a ridge regression estimator, where δ acts as a sort of ridge

constant. Investigating this further, Björkström and Sundberg (1999) identify from among

criteria similar to (3) that maximize a function of rT
mXT Y and rT

mV rm a wide subclass whose

members each lead to solutions resembling RR and intersect with OLS, PCR, and PLS. This

leads to “least squares ridge regression,” which, as with CR, derives from a criterion in this

subclass.
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1.3 Evaluative cross-validation

A role of cross-validation in RDR is to fix the dimension m, and in CR to select the value α.

For present purposes, such determinations will be made through the weighted cross-validation

diagnostic

CV = n−1
n∑

i,i′=1

{Yi − Ŷ−i}[G]ii′{Yi′ − Ŷ−i′}, (4)

where Ŷ−i is the “deleted prediction” of Yi calculated from (1) but with β̂, Ȳ , and x̄ derived

without reference to Yi and xi. The values [G]ii′ are entries of a (fixed) symmetric non-negative

definite n × n weight matrix G. It is conventional to standardize CV as a “cross-validatory

index,” ρ = 1 − CV/CV0 where CV0 is (4) with deleted predictions calculated as Ŷ−i = (Y1 +

· · · + Yi−1 + Yi+1 + · · · + Yn)/(n − 1). The cross-validatory index cannot exceed 1, but can be

negative, and larger values indicate better predictive performance.

In most applications, and throughout the literature on RDR, G is set to the n× n identity

matrix, in which case (4) is said to be unweighted. Indeed, there is no compelling reason why the

criterion (3) would better suit CR for one choice of G over another. From a strictly algorithmic

point of view, any choice is arbitrary, and it suffices to set G = I simply out of convenience.

However, from a statistical point of view, the choice of G reflects a preference toward certain

predictions over others, and the inability of (3) to adapt to weighted versions of cross validation

highlights its arbitrariness and inflexibility. Our view is that some meaning is afforded to RDR

procedures when the criterion used to construct R reflects an intelligent choice of G, which (3)

does not.

We offer the following paradigm for specifying G in practice. First, note that the cross-

validation diagnostic (4) is closely related to the quadratic loss functions used in decision-

theoretic point estimation,

LQ(β, β̂) = {β − β̂}T QT Q{β − β̂}, (5)

where the s×p matrix Q = [q1, . . . , qs]T identifies a predetermined set of response points at which

it is especially important to make good predictions. The vector β is an unknown parameter of a

5



0 0.25 0.5 0.75 1
0.91

0.9387

0.97
m = 2, ρ = 0.9598

α

O
rd

in
ar

y 
C

R

G = I

0 0.25 0.5 0.75 1
0.3

0.7377

0.85

m = 5, ρ = 0.7377

m = 5, ρ = 0.3507

α

G = G
I

Figure 1: Continuum regression for the infra-red calibration of protein data. Plots of ρ for each m < p as

α varies. The dotted line locates OLS, and the thick lines highlight the m which maximize ρ.

hypothetical probability model Y = Xβ + ε, in which ε represents a vector of mean-zero errors.

Plugging the model into (4) and supposing each Ŷ−i ≈ xT
i β̂ and the entries of ε are negligible

on average, it is seen that

nCV ≈ {β − β̂}T XT GX{β − β̂}+ const. (6)

Comparing (5) and (6) it is seen that G may be treated through quadratic loss weighted by

QT Q = XT GX, and it is immediately obvious that Q = X agrees with the default setting

G = I, which matches with conventional intuition. For other Q, a suitable rule is to set

GQ = I + XV −{QT Q−XT X}V −XT , (7)

where V − is the Moore-Penrose inverse of V . Whenever V is invertible or Q = QV −V , expres-

sion (7) both solves QT Q = XT GQX and leads to GX = I.

References to weighted cross-validation appears sparsely in the literature, but it has been

used, for example, in spatial analyses involving unequally spaced measurements (Militino and

Ugarte, 2001). To our knowledge, (7) and our proposal to use it in a general paradigm for

targeting preferred response points is novel. Its derivation is straightforward after representing

X by a singular value decomposition.

Continuum regression can be extremely sensitive to the analyst’s choice of G. For illustration,

let us revisit Stone and Brook’s (1990) Example 3, which demonstrates CR on a data set having
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n = 12 observations and p = 6 explanatory variables. Further details are given in Section 2.2.1.

Stone and Brooks’s Figure 3 is reproduced in the left panel of the current Figure 1, in which

the unweighted (G = I) cross-validatory index is plotted at each m = 1, . . . , 5 as α varies. The

maximum cross-validatory index of ρ = 0.9598 is achieved at m = 2 and α = 0.36. When

cross-validation is weighted by G = GI the picture changes radically, as shown in the right

panel of the figure. Here, at α = 0.36 the maximum cross-validatory index for m < p drops to

ρ = 0.3507 for m = 5. The maximum cross-validatory index of ρ = 0.7377 is achieved at m = 5

and α = 0.15, and is barely larger than that of ordinary least squares.

1.4 Construction and evaluation

We have drawn a distinction between two types of objective criteria used in RDR: constructive

criteria, such as (3), which guide the construction of R, and evaluative criteria, such as (4), which

evaluate a procedure’s overall predictive performance. The controversy over RDR is directed

more at its constructive aspect than its evaluative one. On the evaluative side, cross-validatory

assessment is intrinsic to problems of prediction, and widely accepted in general. (See e.g.,

Stone, 1974, for an in-depth discussion.) The constructive criterion (3), or the more general

criterion of Björkström and Sundberg (1999), on the other hand, is sometimes defended on the

basis that it balances covariance, rT
mXT Y , with variance, rT

mV rm, but it is unclear exactly why

this is meaningful for prediction. This leaves vague the meaning and implications of established

RDR techniques’ approach to construction.

2 A cross-validatory continuum

As our first proposal to firm up the foundations of RDR, we seek to extend the interpretability

of cross-validatory assessment to construction, but do so in a way that retains the spirit of tech-

niques like CR. Our approach is to replace (3) with a continuum of cross-validation diagnostics.
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2.1 Constructive cross-validation

To formulate a cross-validatory continuum, write V −1
m = Rm(RT

mV Rm)−1RT
m for m ≥ 1, V −1

0 =

0, and define the deleted prediction errors

dm,i = Yi − Ŷ−i =
Yi − xT

i V −1
m XT Y

1− xT
i V −1

m xi

, (8)

where now Ŷ−i is the deleted prediction of Yi through (1) with Rm held fixed, and data-

recentering omitted. The right-hand expression follows from Lemma B.2 in the appendices.

By holding Rm fixed, this perspective treats the regression components as model-like parame-

ters independent of the data actually measured, which distinguishes these constructive versions

of Ŷ−i from those involved in the evaluative criterion (4). Our cross-validatory continuum con-

sists of the weighted Lγ norms of the dm,i over the positive γ, weighted by the same G used in

the evaluative criterion (4). For its definition, write G in its diagonalized form as UgG0U
T
g for

some n×n orthonormal matrix Ug = [ug,1, . . . , ug,n] and diagonal matrix G0 = diag(g1, . . . , gn).

The weighted Lγ norm of the deleted prediction errors is then

CVm,γ =

{
n∑

i=1

g
γ/2
i |uT

g,idm|γ
}1/γ

, (9)

where dm = [dm,1, . . . , dm,n]T and γ > 0. (It is technically a pseudo-norm for γ < 1.) Notice

that CVm,γ becomes aCVm,γ when G is rescaled by a2.

Although (9) matches the principle underlying regressor construction with that of evaluation,

defining it on a continuum does permit inexact matches with (4), and this may seem to taint our

procedure with a certain arbitrariness. Such criticism is justified, and it is prudent to pay special

attention at γ = 2, in which case (9) reduces to a weighted version of the PRESS diagnostic

(Allen, 1974),

WPRESSm = Y T {I −XV −1
m XT }DCV GDCV {I −XV −1

m XT }Y, (10)

where DCV is a diagonal matrix with i’th diagonal entry (1− xT
i V −1

m xi)−1.

Ideally, one would want to construct R so that each rm, minimizes CVm,γ given Rm−1, but

computational limitations (e.g., numerous local minima) force us to settle for an approximate
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optimization. We require RT
mV Rm = I, which is equivalent to the restrictions adopted in CR,

although the normalization constraint is different. The core subroutine which calculates rm

given Rm−1 is carried out multiple steps, as follows:

Step 1: Obtain candidate components rm,1, . . . , rm,n, for which rm,i minimizes the i’th

deleted prediction error in absolute value, |dm,i|. These all have exact analytical solutions,

described below.

Step 2: Evaluate CVm,γ at each rm,i to produce the scores vm,1, . . . , vm,n. From these,

calculate an additional candidate by weighted averaging,

r̄m =
∑

i v−1
m,irm,i/

∑
i v−1

m,i

Step 3: Select rm from among rm,1, . . . , rm,n and r̄m as that candidate achieving the

lowest value of CVm,γ .

The candidate vectors rm,1, . . . , rm,n calculated in Step 1 are not unique as minimizers of |dm,i|.

The preferred set of minimizers is that which leads the averaged candidate r̄m to the greatest

decrease in CVm,γ . We translate this to a requirement where rm,1, . . . , rm,n are to be chosen

as homogeneous as possible, postulating that they would then cluster around a true global

minimum, which r̄m would then have an improved chance of closely approximating. To this

end, each individual rm,i is taken to be the minimizer of |dm,i| which forms the smallest angle

with the fixed vector XT Y .

The exact solutions for Step 1 are now described, using a certain parameterization that

greatly simplifies the problem. Let R̃ be any p× (p−m + 1) matrix satisfying R̃T V R̃ = I and

RT
m−1V R̃ = 0. Any candidate can then be parameterized as rm,i = R̃zi for some (p−m+1)×1

vector zi satisfying zT
i zi = 1. Now write

ai = Yi − xT
i V −1

m−1X
T Y, bi = 1− xT

i V −1
m−1xi, c1 = ‖R̃XT Y ‖,

u1 = R̃XT Y/c1, vi,1 = uT
1 R̃xi, vi,2 = ‖R̃xi − vi,1u1‖,

and if vi,2 > 0 set ui,2 = (R̃xi − vi,1u1)/vi,2. Note that ‖R̃xi‖2 = v2
i,1 + v2

i,2. Now write

zi = zi,1u1 + zi,2ui,2, where zi,1 = zT
i u1 and zi,2 = zT

i ui,2. Using Lemma B.2 in the appendix,
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this parameterization permits the deleted prediction error (8), calculated at any zi, to be written

dm,i =
ai − c1(z2

i,1vi,1 + zi,2vi,2)
bi − (zi,1vi,1 + zi,2vi,2)2

. (11)

Exact closed-form solutions for the preferred zi,1 and zi,2 minimizing (11) are described

separately for the cases vi,2 6= 0 and vi,2 = 0. Their technical derivation appears in in the

appendix. To avoid pathological cases, which are also handled in the appendix, assume bi is

neither 0, nor ‖R̃xi‖2.

Case 1, vi,2 6= 0: Whenever

[
avi,1/c1 + 1

2v2
i,2

]2 ≥ (avi,1/c1)2 + v2
i,2, (12)

a zi exists for which |dm,i| = 0. In this case, set

θ2 =
1

‖R̃xi‖2
{

avi,1/c1 + 1
2v2

i,2 (13)

+
√[

avi,1/c1 + 1
2v2

i,2

]2 − (a/c1)2‖R̃xi‖2
}

,

and

zi,1 =
√

θ2 and zi,2 =
a/c1− θ2vi,1

zi,1vi,2
. (14)

When (12) does not hold, set the quantity d to whichever of

ai

bi
+

1
2bi(bi − ‖R̃xi‖2)

{
ai‖R̃xi‖2 − bic1vi,1 (15)

±‖R̃xi‖
√

(bic1)2 + a2
i ‖R̃xi‖2 − bic1

(
2aivi,1 + c1v2

i,2

)}

is closest to zero. In this case, |d| is the smallest possible value of |dm,i|, and dbi − ai will equal

one of

1
2

[
d‖R̃xi‖2 − c1vi,1 ±

√[
d‖R̃xi‖2 − c1vi,1

]2

+ (c1vi,2)2
]

. (16)

Set

zi,1 =
1
ξ





d(v2
i,1 − v2

i,2) + c1vi,1 ±
√[

d‖R̃xi‖2 − c1vi,1

]2

+ (c1vi,2)2

(2dvi,1 − c1)vi,2





, (17)

10



using the “+” version when, and only when, dbi − ai matches the larger of (16); set zi,2 = 1/ξ,

where ξ is such that z2
i,1 + z2

i,2 = 1.

Case 2, vi,2 6= 0: Whenever

0 ≤ avi,1/c1 ≤ 1 (18)

set zi,1 =
√

avi,1/c1 so that |dm,i| = 0. When (18) does not hold, set d to whichever of

ai

bi
or

ai − c1vi,1

bi − v2
i,1

(19)

is closest to zero. If d = ai/bi, set zi,1 = 0; otherwise set zi,1 = 1.

Note in this case it is possible for z2
i,1 < 1, which requires that zi = zi,1u1 + zi,3ui,3 for

some normalized vector ui,3 orthogonal to u1 and zi,3 = ±
√

1− z2
i,1. The preferred solution

is to set ui,3 and zi,3 in a manner that leaves the resulting rm,1, . . . , rm,n tightly clustered.

Our subroutine handles this as follows: Among the preferred minimizers, zi∗ , of the |dm,i∗ |

having vi∗,2 6= 0, find the index i∗0 = i∗ for which |zi∗,1 − zi,1| is smallest. Set ui,3 = ui∗0 ,2 and

zi,3 = sign(zi∗0 ,2)
√

1− z2
i,1.

2.2 Empirical demonstrations

We illustrate our cross-validatory procedure on three example data sets examined in Stone and

Brooks (1990), beginning with example introduced at the end of Section 1.

2.2.1 Near infra-red calibration for protein

The data of Example 3 in Stone and Brooks are compiled from the infra-red spectrometer

measurements of flour proteins in Table 1 of Fearn (1983). Only the first n = 12 rows are used.

The p = 6 explanatory variables, L1, . . . , L6, measure log(1/reflectance) at six wavelengths, and

the associated response variable Y measures protein percentage. Following Stone and Brooks,

we preprocess so that the (i, j) entries of X are xi6 = L̄ = (Li1 + · · ·+Li6)/6) and xij = Lij− L̄

for j = 1, ..., 5, then center and scale.
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Figure 2: Cross-validatory continuum regression for the infra-red calibration of protein data. Plots of ρ for

each m < p as α varies. The dotted lines locate OLS and γ = 2, and the thick lines highlight the m which

maximize ρ.

Recall Figure 1, which indicates the maximum cross-validatory index achieved by ordinary

CR is ρ = 0.9598 when G = I and ρ = 0.7377 when G = GI . The ρ values for cross-validatory

CR are shown in Figure 2, plotted for each m < p as γ/(γ + 2) varies between 0 and 1. Note

that γ/(γ + 2) = 0, 1/2 and 1 correspond to γ = 0, 2 and ∞. For G = I, the maximum index

of ρ = 0.9493 is achieved at m = 1 and γ/(γ + 2) = 0.99. For G = GI , the maximum index of

ρ = 0.8514 is achieved at m = 1 and γ/(γ + 2) = 0.97. For these data, it is seen that the the

performance of our new procedure is comparable to that of ordinary CR for G = I, but leads

to a vastly increased value of ρ for G = GI .

With γ = 2 fixed, for G = I, the maximum index of ρ = 0.9425 is achieved at m = 1. For

G = GI , the maximum index of ρ = 0.7697 is achieved at m = 1. In both configurations, the ρ

achieved by cross-validatory CR exceeds that of OLS, and for G = GI also that of ordinary CR.

2.2.2 Cement heat evolution data

Our second example is Example 1 of Stone and Brooks, analyzing data from Table 20.2 of

Hald (1952), which measures the heat evolved in n = 13 cement samples in the 180 days after

water was added. The response, Y , measures heat evolved in calories per gram, and we have

p = 4 explanatory variables, each measuring the estimated percentage by weight of a specific
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Figure 3: Ordinary CR and cross-validatory CR for the heat evolution data. Plots of ρ for each m < p as

α varies. The dotted lines locate OLS and γ = 2, and the thick lines highlight the m which maximize ρ.

compound in the cement.

Figure 3 plots ρ for ordinary CR and cross-validatory CR. For ordinary CR with G = I

(upper-left panel), the level ρ = 0.9718 is attained for m = 3 at α ≈ 0.41 and remains there

as α increases, indicating PCR leads to the optimal predictive performance on this continuum.

Setting G = GI (lower-left panel), the maximum index of ρ = 0.8118 is achieved at m = 2

and α = 0.06. For cross-validatory CR with G = I (upper-right panel), the maximum index

of ρ = 0.9670 is achieved at m = 1 and γ/(γ + 2) = 0.53. With G = GI (lower-right panel),

the maximum index of ρ = 0.7253 is achieved at m = 1 and γ/(γ + 2) = 0.01. For these data,

we see that the maximum ρ of our new procedure is comparable, but less than that of ordinary

CR. It is nevertheless able to enhance predictive performance over OLS.

With γ = 2 fixed, for G = I, the maximum index of ρ = 0.9657 is achieved at m = 1. For

G = GI , the maximum index of ρ = 0.7253 is achieved at m = 1. Both of these values exceed

those of OLS, but not ordinary CR.
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Figure 4: Ordinary CR and cross-validatory CR for the road accident data. Plots of ρ for each m < p as α

varies. The dotted lines locate OLS and γ = 2, and the thick lines highlight the m which maximize ρ.

For situations where inexact matches are allowed between the weights of evaluation and

construction, let us note that when G = GI in (4) but G = I in (9), cross-validatory CR

achieves a maximum ρ = 0.8527 at m = 1 and γ/(γ + 2) = 0.35, which exceeds that of ordinary

CR.

2.2.3 Road accident data

We now apply cross-validatory CR to Stone and Brooks’s “thoroughly soft” Example 2, rean-

alyzing the data from Table 8.1 of Weisberg (1980). The response, Y , measures 1973 accident

rates along n = 13 stretches of “minor arterial highways” in Minnesota, and just the first p = 9

explanatory variables are used.

Figure 4 plots ρ for ordinary CR and cross-validatory CR. In this example, the cross-

validatory indices for ordinary least squares is extremely low, at ρ = −12.1775 for G = I

and ρ = −109.3379 for G = GI . Applying ordinary CR (left panels), ρ increases roughly in α
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at each m < p, tending at m = 1 to maximum values of ρ = 0.6484 for G = I and ρ = 0.3452

for G = GI as α approaches 1. As in the previous example, PCR appears best along this

continuum. The ρ values for cross-validatory CR (right panels) remain far below that of PCR,

hovering around the values attained by ordinary least squares. With G = I the maximum index

of ρ = −11.3353 is achieved at m = 1 and γ/(γ + 2) = 0.01. With G = GI , the maximum index

of ρ = −101.2090 is achieved at m = 1 and γ/(γ + 2) = 0.75. The new procedure does not

increase predictive performance over PCR, but does provide an enhancement over OLS.

With γ = 2 fixed, for G = I, the maximum index of ρ = −12.1112 is achieved at m = 4.

For G = GI , the maximum index of ρ = −107.2434 is achieved at m = 1. Both of these values

exceed those of OLS, but not ordinary CR.

3 Model-based regularization

In this section, we consider model-based criteria for constructing R in a meaningful way, building

upon a model similar to the Bayesian formulation described in Frank and Friedman (1993).

3.1 Models for dimension reduction

Estimators of the form (2) arise as solutions to maximum penalized likelihood estimation under

the the linear regression model Y = Xβ+ε with the error vector ε following a mean-zero normal

distribution with covariance matrix σ2I. Specifically, the log-likelihood for β is LogL(β; Y ) =

−‖Y −Xβ‖2/(2σ2) − (n/2) log 2πσ2, and if Sm is any p ×m matrix satisfying ST
mRm = I, an

appropriate penalized log-likelihood is

PLogLm(β;Y ) = LogL(RmST
mβ;Y )− τ

2σ2
βT SmRT

mARmST
mβ, (20)

where τ is a nonnegative scalar and A is symmetric nonnegative-definite p × p matrix. (Tech-

nically, to form a true log-likelihood, LogL should be constrained to reflect that the data are

centered, but this will not effect our results.) The β maximizing PLogLm(β; Y ) is

β̃τ = Rm(RT
m{V + τA}Rm)−1RT

mXT Y, (21)
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which tends to β̂ in (2) as τ tends to zero. Alternately, a Bayesian perspective motivates (21) as

the posterior mean under a mean-zero multivariate normal prior for β with covariance matrix

τ−1σ2A−1
m , where A−1

m = Rm(RmARm)−1RT
m for m ≥ 1, and A−1

0 = 0.

When τ > 0, the matrix A may be seen as a weighting parameter that may be specified to

match the analyst’s choice of G in (4). For instance, the results of Strawderman (1978) and

Stein (1981), working entirely in an RR setting, suggest that the setting A = V (QT Q)−1V

induces shrinkage properties favorable to the specific Q in the quadratic loss function (5). This

suggests that for G = I, which matches Q = X through (7), an appropriate setting is A = V .

When n < p, V is not of full rank and it is necessary to focus on a lower-dimensional core

model. Here, let us write X according to its singular value decomposition X = U0ΛUT
1 , where U0

and U1 are respectively n×n and n×p orthonormal matrices, and Λ is an n×n diagonal matrix

with non-zero diagonal entries. An equivalent rotated model is now UT
0 Y = Λα + ε∗, with α =

UT
1 β, and ε∗ a mean-zero normal random error vector with covariance matrix σ2UT

0 U0 = σ2I.

An equivalent rotated Bayesian prior, now placed on α, has covariance matrix τ−1σ2UT
1 A−1

m U1.

Under the restriction A = U1U
T
1 AU1U

T
1 , we may write Ã−1

m = UT
1 A−1

m U1 = R̃m(R̃mÃR̃m)−1R̃T
m,

where Ã = UT
1 AU1 and R̃m = UT

1 Rm. An analog to (21) is now

α̃τ = R̃m(R̃m{ΛT Λ + τÃ}R̃m)−1R̃T
mXT Y (22)

= UT
1 Rm(RT

m{V + τA}Rm)−1RT
mXT Y.

Observing that α̃τ is simply a rotation of β̃τ , it is clear that we may proceed from either model

Y = Xβ + ε or UT
0 Y = Λα + ε∗, provided we impose the restriction A = U1U

T
1 AU1U

T
1 . Thus,

to simplify our exposition, we shall always assume the former, with V , possibly acting in place

of ΛT Λ, always invertible.

The discussion above suggests, for any n and p, a preference for constructive criteria that

are invariant to orthogonal rotations of the data. In other words, if Y and X were replaced by

UT
0 Y and UT

0 X, for some n × n orthonormal matrix, it is preferred that the manner in which

Rm is assessed would remain unaffected. Basic cross-validation diagnostics like (9) do not have
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this property, but all of the criteria we consider in this section do.

3.2 Model-based constructive criteria

One advantage of the model-based perspective is that it establishes a viewpoint where Rm is a

“parameter” to be “estimated,” and in doing so opens up an array of meaningful alternatives

to the constructive criterion (3). These are model-based “fit-diagnostics,” each assessing Rm

according to a particular estimation principle. To retain generality, we describe them below

leaving τ arbitrary, and for convenience write C = V + τA and C−1
m = Rm(RT

mCRm)−1RT
m

for m ≥ 1, C−1
0 = 0, so that β̃τ = C−1

m XT Y . Our orthogonality constraint on the regression

components is also modified as RT CR = 1.

• Generalized cross-validation: A rotation-invariant version of (10), with V −1
m replaced by

C−1
m , is the generalized cross-validation diagnostic

WGCVm =
Y T {I −XC−1

m XT }G{I −XC−1
m XT }Y

[ 1
nTrace {I −XC−1

m XT }]2 , (23)

originally proposed in Golub et al. (1979) in an unweighted form. In the weighted form

above, if Y and X were replaced by UT
0 Y and UT

0 X, one would also need to replace G

by UT
0 GU0. In a constructive algorithm, rm given Rm−1 would be chosen to minimize

WGCVm.

• Mean squared error diagnostics: For a decision-theoretic perspective, Rm may be assessed

through an unbiased estimate of E[LQ(β, β̃)],

WMSEm = Y T XV −1{I − V C−1
m }QT Q{I − C−1

m V }V −1XT Y (24)

+σ2Trace{2QT QC−1
m −QT QV −1}.

In a constructive algorithm, rm given Rm−1 would be chosen to minimize WMSEm.

• Significance diagnostics: Analogous to an F statistic for testing the significance of a model

component, the logarithm of a penalized likelihood ratio is

PLogLm − PLogLm−1 =
1

2σ2
Y T X{C−1

m − C−1
m−1}XT Y,
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which similarly assesses the contribution of rm, given Rm−1. By Lemma B.2 in the ap-

pendices, this is equivalent to

F̂m =
(rT

m{I − CC−1
m−1}XT Y )2

rT
m{I − CC−1

m−1}Crm

. (25)

In a constructive algorithm, rm given Rm−1 would be chosen to maximize F̂m.

• Bayes factors: A Bayesian analogue of the F statistic is a Bayes factor (cf. Smith and

Spiegelhalter, 1980), which is derived from the marginal distribution of β̃τ . With

LogLII
m = − 1

2σ2

{
Y T XV −1{V −1 + τ−1A−1

m }−1V −1XT Y (26)

+σ2 log[det{V −1 + τ−1A−1
m }]}− p0

2
log 2πσ2,

a Bayes factor is derived as

BFm = LogII
m − LogII

m−1. (27)

In a constructive algorithm, rm given Rm−1 would be chosen to maximize BFm.

• Information criteria: The last set of diagnostics we will consider are the information

criteria,

ICξ
m = n log

(
Y T {I −XC−1

m XT }Y
n

)
+ ξ(Rm), (28)

where ξ(Rm) is penalty function. Among its most common variations, “Akaike’s Infor-

mation Criterion” (AIC) (Akaike, 1974) uses the penalty function ξ(Rm) = 2m, and the

“Bayesian information criterion” (BIC) (Schwartz, 1978) uses ξ(Rm) = m log n. In a

constructive algorithm, rm given Rm−1 would be chosen to minimize ICξ
m.

3.3 Diagnostic breakdown

Examining (21), note that β = β̃τ solves the equations Cβ = XT Y whenever Rm is such that

XT Y = CRma for a suitable m× 1 vector a. In other words, whenever C−1XT Y is in the span

of the columns of Rm, the RDR estimator β̃τ reduces to the ridge regresion estimator C−1XT Y .
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When this phenomenon occurs, the machinery of RDR has “broken down” and the possibility

of any enhancement in predictive performance disappears.

This is different type of connection between RDR and RR than has been noticed by other

authors. In Section 1.2 it was noted that the CR criterion (with τ = 0) leads to r1 ∝ (V +

δI)−1XT Y for some δ. Consequently, β̃τ is proportional to a ridge regression estimator when

m = 1. The present observation is that, for any known or unknown value of τ , including τ = 0,

and for any m, whenever the constructive criterion leads C−1XT Y to fall in the span of Rm,

β̃τ becomes identically the ridge regression estimator associated with τ and A.

The following discussion will demonstrate that such breakdown is pervasive across the array

of standard model-based diagnostics outlined above. It is associated specifically with weight

settings consistent with G = I, in which QT Q = V and A = V . Because G = I is usually the

default setting in analyses concerned with predictive performance, our results seriously limit the

extent to which model-based diagnostics are suitable for the constructive aspect of RDR.

The mathematical development begins with the simple, but fundamental result:

Lemma 3.1 For arbitrary τ ≥ 0, F̂1 is maximized when r1 solves Cr1 ∝ XT Y . Thereafter, for

m > 1, F̂m = 0. RDR based on maximizing F̂m would therefore lead to breakdown.

Proof: At m = 1, C−1
m−1 = 0, and the Cauchy-Schwartz inequality implies that (25) constrained

by r1Cr1 = 1 is maximized when Cr1 ∝ XT Y . Thereafter, for m > 1, CC−1
m−1X

T Y = XT Y ,

implying F̂m = 0. Q.E.D

Extension of Lemma 3.1 to the remaining diagnostics follows by connecting each one to F̂m.

To this end, define the quadratic forms

QGCV
m (G) = Y T {I −XC−1

m XT }G{I −XC−1
m XT }Y, (29)

QMSE
m (Q) = β̂T {I − V C−1

m }QT Q{I − C−1
m V }β̂ (30)

QIC
m = Y T {I −XC−1

m XT }Y, (31)

QII
m = Y T X{V −1 − C−1

m }XT Y. (32)
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along with the quantities

D̂m(G) =
rT
m{I − CC−1

m−1}XT G{I −XC−1
m−1X

T }Y
rT
m{I − CC−1

m−1}XT Y
,

Em(G) =
rT
m{I − CC−1

m−1}XT GX{I − C−1
m−1C}rm

rT
m{I − CC−1

m−1}C{I − C−1
m−1C}rm

,

and let HQ be defined through Q as HQ = XV −1QT QV −1XT . Direct application of Lemma

B.2 in the appendix implies the following recursive formulas:

QGCV
m (G) = QGCV

m−1 (G)− F̂m−1{2D̂m(G)− Em(G)}, (33)

QMSE
m (Q) = QMSE

m−1 (Q)− F̂m−1{2D̂m(HQ)− Em(HQ)} (34)

QIC
m = QIC

m−1 − F̂m−1 (35)

Q̂II
m = Q̂II

m−1 − F̂m−1. (36)

Several corollaries of Lemma 3.1 are now easily deduced:

Corollary 3.1.1 Suppose the penalty function ξ is a function of m only, ξ(Rm) = ξ(m). For

arbitrary τ ≥ 0, ICξ
1 is minimized when r1 solves Cr1 ∝ XT Y . Thereafter, for m > 1, ICξ

m is

constant. RDR based on maximizing ICξ
m would therefore lead to breakdown.

Proof: The information criteria may be written ICξ
m = n log(QIC

m /n) + ξ(Rm), a monotone

function of QIC
m plus a function of m only. Hence, by (35) and Lemma 3.1, ICξ

1 minimized when

r1 solves Cr1 ∝ XT Y . Thereafter F̂m will be zero and, also by (35), ICξ
m = ICξ

1 . Q.E.D

Corollary 3.1.2 Set G = I, Q = X, and A = V . For arbitrary τ ≥ 0, both WGCV1 and

WMSE1 are minimized when r1 solves Cr1 ∝ XT Y . Thereafter, for m > 1, WGCVm and

WMSEm are constant. RDR based on maximizing either WGCVm or WMSEm would therefore

lead to breakdown.

Proof: Note that

D̂m(G) = D̂m(XV −1XT G)

Em(G) = Em(XV −1XT G) = Em(GXV −1XT ),
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so D̂m(I) = D̂m(HX) and Em(I) = Em(HX). These relationships along with the identity

V −1
m V V −1

m = V −1
m imply

D̂m(I) = D̂m(HX) = 1 and Em(I) = Em(HX) =
1

1 + τ
. (37)

Under the stated conditions, the diagnostics may be written

log WGCVm = log QGCV
m (I)− 2 log

(
n− m

1 + τ

)
,

WMSEm = QMSE
m (V ) + 2

m

1 + τ
−min(n, p).

Hence each is an increasing function of QGCV
m or QMSE

m , respectively, plus a function of m only.

By (37), (33) and (34) the quadratic forms simplify as

QGCV
m (I) = QGCV

m−1 (I)− bF̂m−1,

QMSE
m (V ) = QMSE

m−1 (V )− bF̂m−1,

where b = 2− (1 + τ)−1. The result then follows from a similar deduction as that of Corollary

3.1.1. Q.E.D

Finally, Lemma 3.1 extends to the Bayes factors through

Corollary 3.1.3 Set A = V . For arbitrary τ > 0, BF1 is maximized when r1 solves Cr1 ∝

XT Y . Thereafter, for m > 1, BFm is constant. RDR based on maximizing BFm would therefore

lead to breakdown.

Proof: By Lemma B.1 in the appendix, one has the identity

(V −1 + τ−1A−1
m )−1 = {I − V C−1

m }V, (38)

and by this −2LogLII
m may be written

1
σ2

Q̂II
m + ξII(Rm) + p0 log 2πσ2,

where ξII(Rm) = log
[
det(V −1 + τ−1A−1

m )
]
. Corollary B.3.1 in the appendix shows that when

A = V , ξII(Rm) is in fact a function of m only. Therefore, by (36) and Lemma 3.1, the result

follows as in Corollary 3.1.1. Q.E.D
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4 Conclusions and discussion

Cross-validatory continuum regression has been favorably demonstrated in several respects:

(i.) Its flexible construction mechanism can be adjusted to match the weights of a non-arbitrary

evaluative criterion. (ii.) It inherits the interpretability of cross-validatory assessment and direct

relevance to problems of prediction. (iii.) It often leads to predictive performance comparable

to that of ordinary CR, and can, in some cases, lead to substantially improved performance.

For fixed γ = 2, it was seen in all of our empirical demonstrations to provide an enhancement

over OLS. (iv.) Its core constructive subroutine relies on direct calculation rather than iterative

searches, permitting quick execution.

Regarding future research, we speculate the candidate regression components rm,1, . . . , rm,n

calculated in our constructive algorithm might be used to identify “predictive outliers,” i.e.,

responses that are especially difficult to cross-validate. We also anticipate some further compu-

tational efficiency is possible by integrating the core subroutine with the rest of the algorithm.

Our investigation of model-based construction revealed a new connection between RDR

and RR through the “breakdown” phenomenon. Although the model based-approaches benefit

in terms of interpretability from the presence of a model, the pervasiveness of breakdown in

configurations associated with G = I suggests a serious limitation to their potential for practical

benefit. Our investigation demonstrates that breakdown is excluded from neither frequentist nor

Bayesian lines of thought, but it does not close this line of inquiry. For instance, it is conceivable

the model-based diagnostics would lead to enhanced performance in configurations associated

with G = GI or others. Moreover, the possible Bayesian formulations of RDR are far from

exhausted. Let us note in particular that a normal mixture prior placed on β would set up a

Bayesian model averaging model, which admits a suitable construction mechanism in the form

of a hierarchical prior placed on τ and R, and computational method based standard Markov

Chain Monte Carlo routines. Such a setup is mentioned in George and McCulloch (1993).
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A Technical results for Section 2

Lemma A.1 Under the conditions specified in Section 2 and vi,2 6= 0, solutions (14,17) mini-

mize (11) over all zi,1, zi,2 subject to z2
i,1 + z2

i,2 = η2 with 0 ≤ η2 ≤ 1, and among the possible

minimizers of (11) form the smallest angle with R̃XT Y .
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Proof: Note the zi forming the smallest angle with R̃XT Y are those having zi,1 as large as

possible.

The condition dm,i = 0 holds if, and only if, zi,2 = (ai/c1 − z2
i,1vi,1)/(zi,1vi,2), and with

z2
i,1 + z2

i,2 = η2 this is equivalent to

z2
i,1 =

1
‖R̃xi‖2

{ [
avi,1/c1 + 1

2v2
i,2η

2
]

(39)

±
√[

avi,1/c1 + 1
2v2

i,2η
2
]2 − (a/c1)2‖R̃xi‖2

}
.

The “+” solution always leads to z2
i,1 ≥ 0 since −1 ≤ t/

√
t2 − b0 ≤ 0 whenever t ≤ 0 and t2 ≥ b0

for any b0. In (14), zi,1 is set to the positive square root of the “+” solution to make it as large

as possible. Moreover, the derivative of the “+” solution with respect to η2 is

d

dη2
z2
i,1 =

v2
i,2

2‖R̃xi‖2



1 +

avi,1/c1 + 1
2v2

i,2η
2

√[
avi,1/c1 + 1

2v2
i,2η

2
]2 − (a/c1)2‖R̃xi‖2



 ,

which is positive since −1 ≤ t/
√

t2 − b0 ≤ 1 for all t with t2 ≥ b0. The preferred solution

therefore has η2 = 1, which leads to (14).

When (12) does not hold, rewrite (11) as ζT Ωζ = dm,ibi − ai, where ζ = [zi,1, zi,2]T and

Ω =




vi,1(dm,ivi,1 − c1) vi,2(dm,ivi,1 − c1/2)

vi,2(dm,ivi,1 − c1/2) dm,iv
2
i,2


 (40)

The quantities in (17) are the eigenvalues of Ω, which we shall label ω1 for the smaller and ω2

for the larger. One can therefore find a rotation ζ̃ = [z̃i,1, z̃i,2]T of ζ for which ω1z̃
2
i,1 + ω2z̃

2
i,2

and z̃2
i,1 + z̃2

i,2 = η2. The solutions have

z̃2
i,1 =

dm,ibi − ai − ω2η
2

ω1 − ω2
and z̃2

i,2 = −dm,ibi − ai − ω1η
2

ω1 − ω2
, (41)

and (17) are the inverse rotations for suitable dm,i and η2 = 1.

To calculate (41) it is necessary to substitute the dm,i = d that minimizes |dm,i|. For

0 ≤ z̃2
i,1 ≤ η2, one must have ω1η

2 ≤ dm,ibi − ai ≤ ω2η
2, or equivalently

bi(bi − ‖R̃xi‖2η2)
η4

(
dm,i − ai(2bi − ‖R̃xi‖2η2)− bic1vi,1η

2

2bi(bi − ‖R̃xi‖2η2)

)2

(42)

≤ ‖R̃xi‖2
(bic1)2 + a2

i ‖R̃xi‖2 − bic1(2aivi,1 + c1v
2
i,2η

2)

4bi(bi − ‖R̃xi‖2η2)
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The quantities (15) are the roots of this equation, which lead to z̃2
i,1 = η2 or z̃2

i,1 = 0.

We leave the following for the reader to verify: (i) Whenever the right side of (42) is negative,

so is bi(bi−‖R̃xi‖2η2), and therefore the parabola in dm,i on the left side is concave; (ii.) As is

implied by their derivatives with respect to η2, both roots in (15) have a pole at η2 = bi/‖R̃xi‖2

and are monotonic in the ranges η2 < bi/‖R̃xi‖2 and η2 > bi/‖R̃xi‖2; (iii.) The roots in (15)

straddle the ratio ai/bi whenever bi(bi − ‖R̃xi‖2η2) > 0. (The difference of the squares of the

two terms in the braces is c1vi,2bi(bi − ‖R̃xi‖2η2) > 0.)

Since (12) does not hold, dm,i = 0 is impossible, and there are only two possible configura-

tions for (15): either bi(bi−‖R̃xi‖2η2) < 0 and the roots (15) straddle zero, or bi(bi−‖R̃xi‖2η2) >

0 and both roots lie entirely to the left or right of zero.

It remains to show that the smallest |dm,i| is achieved at η2 = 1. Set η2 = 1 and calculate

(15). If bi(bi − ‖R̃xi‖2) < 0, the pole at η2 = bi/‖R̃xi‖2 implies any smaller possible |dm,i|

leads to the existence of a solution with dm,i = 0, which contradicts that (12) does not hold. If

bi(bi − ‖R̃xi‖2) > 0, the monotonicity of the derivative implies any smaller possible |dm,i| leads

to the preferred solution at η2 = 0, for which dm,i = ai/bi. But this is a contradiction since the

roots (15) straddling ai/bi imply one of them would be closer to zero at η2 > 0. Q.E.D.

Lemma A.2 Under the conditions specified in Section 2 and vi,2 = 0, the respective solutions

zi,1 =
√

avi,1/c1, zi,1 = 0, or zi,1 = 1 minimize (11) over all zi,1 with 0 ≤ z2
i,1 ≤ 1, and among

the possible minimizers of (11) form the smallest angle with R̃XT Y .

Proof: Clearly, dm,i = 0 is possible whenever 0 ≤ avi,1/c1 ≤ 1, and zi,1 =
√

avi,1/c1 is the

largest of the solutions. Otherwise,

zi,1 =

√
dm,ibi − ai

v2
i,1dm,i − c1vi,1

,

where dm,i = d is set to the possible value minimizing |dm,i|. Working case-by-case for bi < 0,

0 < bi < v2
i,1, and bi > v2

i,1, it is not difficult to show that one of the quantities in (19) yields

the correct dm,i. Q.E.D.

The pathological cases of bi = 0 and bi = ‖R̃xi‖2 are covered by the next two lemmas. The
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proofs are omitted, but are straightforward, following similar arguments as those of the previous

two lemmas.

Lemma A.3 For the case of vi,2 6= 0 the solutions (14, 17) minimize (11) over all zi,1, zi,2

subject to z2
i,1 + z2

i,2 = η2 with 0 ≤ η2 ≤ 1, and among the possible minimizers of (11) form the

smallest angle with R̃XT Y , provided

d =
1

‖R̃xi‖2
[
1
4c2

1v
2
i,2η

2/ai − (ai − c1vi,1η
2)/η2

]
,

when bi = 0 or

d =
1
4c2

1v
2
i,1/‖R̃xi‖2 + aic1vi,1/bi − (ai/bi)2‖R̃xi‖2

(ai/bi)‖R̃xi‖2 − c1vi,1

when bi = ‖R̃xi‖2.

Lemma A.4 For the case of vi,2 = 0 the solutions zi,1 = 1 when bi = 0, or zi,1 = 0 when

bi = ‖R̃xi‖2 minimize (11) over all zi,1 with 0 ≤ z2
i,1 ≤ 1, and among the possible minimizers

of (11) form the smallest angle with R̃XT Y .

B Technical results for Section 3

Lemmas B.1 and B.2 below are standard results from matrix analysis; see e.g., Appendix A of

Mardia et al. (1979).

Lemma B.1 For matrices A, U , and V ,

(A− UV T )−1 = A−1 + A−1U(I − V T A−1U)−1V T A−1

whenever the expressions make sense.

Lemma B.2 For a non-singular matrix A, the partitioning

A =




A11 A12

A21 A22


 implies A−1 =




B−1
11 −A−1

11 A12B
−1
22

−B−1
22 A21A

−1
11 B−1

22


 ,

where B11 = A11 −A12A
−1
22 A21 and B22 = A22 −A21A

−1
11 A12. Moreover,

detA = (det A11)(det B22) = (det A22)(det B11).
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Lemma B.3 For B be an invertible matrix, c a constant, and P the projection matrix into an

m dimensional subspace, U , of Rp. If PBP = P , then

log

[
det

(
B−1 + c−1 PrrT P

rT Pr

)−1
]

is constant for any p× 1 vector r.

Proof: Set

H =




B−1 −q

qT a


 ,

where a = crT Pr and q = Pr, and note by Lemma B.2 that det H may be written equivalently

as

adet(B−1 + a−1qqT ) = det(B−1)(a + qT Bq).

Substituting a and q, this is

(crT Pr) det[B−1 + (crT Pr)−1PrrT P ] =

det(B−1)(crT Pr + rT PBPr) = det(B−1)(crT Pr + rT Pr),

since the projection matrix P is symmetric and PBP = P . Dividing each side by crT Pr gives

the desired conclusion. Q.E.D

Corollary B.3.1 When A = V , the quantity

log
[
det

(
V −1 + c−1A−1

m

)−1
]
, (43)

depends on Rm only through m.

Proof: Define P̃ = I − A1/2A−1
m−1A

1/2, Ṽ = A−1/2V A−1/2, r̃ = A1/2rm, and B̃ = (Ṽ −1 +

τ−1(I − P̃ ))−1. Using Lemma B.2, (43) may be written

log[det A] + log


det

(
B̃−1 + τ−1 P̃ r̃r̃T P̃

r̃T P̃ r̃

)−1

 .
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Following also from this notation, one has

P̃ B̃P̃ = A−1/2{I −AA−1
m−1}

(
V −1 + τ−1A−1

m−1

)−1 {I −A−1
m−1A}A−1/2. (44)

When A = V , the identity (38) reduces this expression to

V −1/2{I − V V −1
m−1}V {I − V −1

m−1V }V −1/2 = I − V 1/2V −1
m−1V

1/2 = P̃ ,

demonstrating that P̃ B̃P̃ = P̃ . Lemma B.3 implies the result. Q.E.D.
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