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Introduction

Multivariate statistical process control (SPC) is useful when several measures of

a product or process are taken at each sampling stage to assess quality. A common

statistical method to simultaneously monitor multiple quality characteristics is use

of the Hotelling T 2 control chart. Mason and Young (2002) and Fuchs and Kenett

(1998) give expository reviews of the use of the T 2 chart. Multivariate charts are also

useful for monitoring quality profiles as discussed by Woodall, Spitzner, Montgomery,

and Gupta (2004).

The main objective of a multivariate control chart is to detect the presence of

special causes of variation. In particular, for a retrospective Phase I analysis of a

historical data set (HDS) the objective is twofold: (1) to identify shifts in the mean

vector which might distort the estimation of the in-control mean vector and variance-

covariance matrix, and (2) to identify and eliminate multivariate outliers. We seek

an in-control subset of the HDS with which we may estimate in-control parameters

for use in a Phase II analysis.

The T 2 control chart is a tool to detect multivariate outliers, mean shifts, and

other distributional deviations from the in-control distribution. An important aspect

of the T 2 control chart for Phase I is how to determine the sample covariance matrix

used in the calculation of the chart statistic. When rational subgroups make sense, the

implication is that the appearance of a special cause within a subgroup is unlikely, so

that all observations within a subgroup share a common distribution. Thus the regular

sample covariance matrix is useful, and taking the average over all the subgroups is the

common procedure, unless there are special causes that alter the covariance matrix.

With individual observations, taking the sample covariance matrix of the historical

data set leads to poor properties in detecting sustained step shifts in the mean vector,

as shown in Sullivan and Woodall (1996). Instead, the use of an estimator robust

to shifts in the mean vector gives better performance in detecting sustained shifts

in the mean vector with a T 2 control chart. A covariance matrix estimator that is

robust to a sustained shift in the mean vector is one based on successive differences.

Sullivan and Woodall (1996) and Vargas N. (2003) demonstrated that the T 2 statistic
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based on the successive differences estimator is effective in detecting sustained step

and ramp shifts in the mean vector. Sullivan and Woodall (1996) found that the T 2

statistic based on the usual sample variance-covariance matrix estimator was not only

less effective in detecting a sustained shift in the mean vector, but, as the magnitude

of the shift increased, the power to detect the shift decreased. Vargas N. (2003) also

proposed a robust estimator based on the minimum volume ellipsoid and showed that

its use led to good properties in detecting shifts in the mean vector. However, the

successive differences estimator does not perform very well in detecting outliers, as

pointed out by Sullivan and Woodall (1996) and Vargas N. (2003) who also proposed

supplementary techniques for the effective detection of outliers. The problem of

detecting only outliers has been studied extensively but is not relevant to our research,

since the successive differences estimator is not useful for that purpose. Sullivan

(2002) proposed an effective way to detect multiple shifts, multiple outliers, and a

combination of both.

Mason, Chou, Sullivan, Stoumbos, and Young (2003) noted that the presence of

common cause trends, cycles, or autocorrelation can result in extremely large values

of the T 2 statistic. Where trends, cycles, or autocorrelation exist in the HDS in the

absence of special causes of variation, then other methods must be employed. In this

paper we provide a more accurate false alarm probability for the T 2 chart based on the

successive differences covariance matrix estimator when the in-control observations

are independent and identically distributed (i.i.d.).

Knowledge of the statistical distribution of the control chart statistics is needed to

calculate the upper control limit (UCL) of the control chart and estimate control chart

performance. If the exact distribution of a control statistic is unknown or intractable,

then the UCL can be calculated from either an approximate distribution or from a

Monte Carlo simulation.

Unfortunately, the exact small-sample distribution of the T 2 statistic based on the

successive differences variance-covariance matrix estimator is unknown. Two approx-

imate distributions have been proposed, one by Sullivan and Woodall (1996) and the

other by Mason and Young (2002). Another possible approximate distribution is the

2



asymptotic distribution as the number of samples increases. We give the asymptotic

distribution and give recommendations for its use. We show that the distribution of

the T 2 statistic depends on its location in the HDS. We also propose an improved

small-sample approximation and demonstrate that in many situations our proposed

approximation performs better than the other approaches. We discuss some useful

properties of the distribution of the T 2 statistic based on the successive differences

variance-covariance matrix estimator and compare the performance of the approxi-

mate distributions.

Since the case of individual observations (without rational subgroups) is the most

challenging situation for estimating the variance-covariance matrix, that is our focus.

With rational subgroups of size n ≥ 2, forming estimates for each subgroup and

pooling these estimates is generally recommended.

The T 2 Statistic

In a Phase I analysis, we begin with an HDS consisting of m independent vectors

of dimension p observed over time, where p is the number of quality characteristics

that are being measured, and p < m. We model the case in which the in-control

observation vectors or residuals from a time series model, xi, i = 1, . . . ,m, are i.i.d.

multivariate normal random vectors with common mean vector and covariance matrix,

i.e.,

xi ∼ Np(µ,Σ). (1)

It is useful to define the m× p HDS X as

X =




x′1
x′2
...

x′m


 .

The Hotelling’s T 2 statistic measures the Mahalanobis distance of the correspond-

ing vector from the sample mean vector. The general form of the statistic is

T 2
i = (xi − x̄)′ S−1 (xi − x̄) ,
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where x̄ = 1
m

∑m
i=1 xi and S is some estimator of Σ.

A common choice for S is the sample variance-covariance estimator given by

S1 =
1

m− 1

m∑
i=1

(xi − x̄) (xi − x̄)′ .

The T 2 statistics based on S1 are then

T 2
1,i = (xi − x̄)′ S−1

1 (xi − x̄) , i = 1, 2, . . . , m.

Wilks (1963) and Gnanadesikan and Kettenring (1972) showed that for i.i.d. ob-

servations from a multivariate normal distribution, as in Equation (1), the exact

distribution of T 2
1,i is proportional to a beta distribution, i.e.,

T 2
1,i

m

(m− 1)2
∼ BETA

(
p

2
,
m− p− 1

2

)
, i = 1, . . . , m. (2)

A detailed proof of Equation (2) is also given in Chou, Mason, and Young (1999).

An alternative choice of S is one based on successive differences, proposed origi-

nally by Hawkins and Merriam (1974) and later by Holmes and Mergen (1993). To

obtain the estimator, we define vi = xi+1 − xi for i = 1, . . . , m − 1 and stack the

transpose of these m− 1 difference vectors into the (m− 1)× p matrix V as

V =




v′1
v′2
...

v′m−1


 .

The estimator of the variance-covariance matrix is then

SD =
V′V

2(m− 1)
. (3)

Use of matrix SD is analogous to use of the moving range estimate of the variance for

a univariate X-chart. Sullivan and Woodall (1996) showed that SD is an unbiased

estimator of Σ if the observations are i.i.d in Phase I. The resulting T 2 statistics

based on SD are given by

T 2
D,i = (xi − x̄)′ S−1

D (xi − x̄) , i = 1, . . . , m. (4)
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As noted in Sullivan and Woodall (1996), Holmes and Mergen (1993) incorrectly

specify the Phase I UCL of a T 2 chart based on T 2
D,i statistics by applying con-

trol limits based on a Phase II analysis. Sullivan and Woodall (1996) proposed an

approximate distribution for T 2
D,i as

T 2
D,i

m

(m− 1)2
∼ BETA

(
p

2
,
f − p− 1

2

)
, (5)

where f = 2(m−1)2

3m−4
. Mason and Young (2002, pp. 26-27) suggested an adjustment to

this approximation, replacing each m in Equation (5) with f , giving

T 2
D,i

f

(f − 1)2
∼ BETA

(
p

2
,
f − p− 1

2

)
. (6)

In this paper we demonstrate that these two approximate distributions may not give

accurate UCLs.

Prins and Mader (1997) defined a T 2 statistic based on an alternative successive

differences estimator. Their estimator is defined by

SPM =
V′

cVc

2(m− 2)

where Vc = (I− 1
m−1

Jm−1)V and Jm−1 is an (m−1)×(m−1) matrix of ones. However,

we do not recommend use of this variance-covariance matrix estimator because it is

a biased estimator of Σ for an in-control process. Further, the distribution of T 2

based on SPM is not known. Prins and Mader (1997) based the UCLs on the χ2(p)

distribution.

Asymptotic Distribution

Although the exact distribution of T 2
D,i is unknown, the asymptotic distribution

for large m is χ2(p) for each i = 1, . . . , m. A proof can be found in Williams, Woodall,

Birch, and Sullivan (2004).

To illustrate, we consider the cases m = 40 and 1000 and p = 4 and 8. We

generated 100,000 T 2
D,i values for each case and plotted the statistics against the

quantiles of the corresponding χ2(p) distribution. We generated a sequence of m T 2
D,i

values by generating m multivariate normal random variables, xi, i = 1, . . . ,m from
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Equation (1) and applying Equation (4). This process was repeated 100,000 times to

generate an empirical distribution of T 2
D,i for each i = 1, . . . , m. Figure 1 gives the

Q-Q plots for the four combinations of m and p. The uppermost curve of each plot is

for T 2
D,1 and the lowermost curve is for T 2

D,2. A straight line is also plotted, indicating

how closely the statistics follow the χ2(p) distribution.

(Insert Figure 1 about here.)

Note that the distributions of the first two T 2
D,i statistics are different, and the discrep-

ancy vanishes as each distribution asymptotically approaches χ2(p) for i = 1 and 2.

In a limited simulation study (not reported here) we found the same asymptotic

behavior for the values i = 3, . . . , m.

Approximate Distribution

In many applications, only a small sample size (m) is available, so an accurate

approximate distribution is needed. To evaluate the approximations of Sullivan and

Woodall (1996) and Mason and Young (2002), consider the simple case where the

HDS is given by

X =




0.54 −1.36
−0.75 2.50

0.51 0.37
0.80 0.86
0.92 1.14




.

The T 2
D,i statistics multiplied by both m

(m−1)2
(Sullivan and Woodall (1996)) and f

(f−1)2

(Mason and Young (2002)), as given in Equations (5) and (6), respectively, are given

in Table 1.

(Insert Table 1 about here.)

Table 1 shows that the scaling factors proposed are too big to constrain the T 2
D,i

statistics to be less than one. Based on this example, we conclude that these approx-

imate distributions may not be the best choice in determining an appropriate UCL

for the T 2 chart since beta random variables must be between zero and one.
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An alternative approach is to divide each T 2
D,i statistic by its true maximum value,

thus constraining it to be between zero and one so that a beta distribution may be

a more accurate approximate distribution. The maximum value of each T 2
D,i statistic

depends on m and i in the following way

MV (m, i) =
2(m− 1)

m

(
i− m + 1

2

)2

+
(m− 1)2(m + 1)

6m
, i = 1, . . . , m. (7)

A detailed proof can be found in Williams, Woodall, Birch, and Sullivan (2004). Note

in Table 1 that the all the T 2
D,i statistics divided by MV (m, i) are between zero and

one.

It is interesting to note that the maximum value does not depend on p, only on

m and i. Also note the symmetry about the center, m+1
2

. In other words, the T 2
D,1

and T 2
D,m statistics have the same maximum value, T 2

D,2 and T 2
D,m−1 have the same

maximum value, and so forth. The maximum value is greatest for the cases where

i = 1 and i = m and is smallest for the center position(s). For the univariate case

(p = 1), Woodall (1992) demonstrated a similar pattern for the maximum X-chart

statistics for individual observations based on the moving range.

To illustrate the variation in the maximum value of T 2
D,i for each i, we generated

100,000 T 2
D,i statistics, for i = 1, . . . , m for the cases p = 2 and m = 5, and plotted

the boxplots in Figure 2. The T 2 statistics were generated in the same fashion as

described in the previous section.

(Insert Figure 2 about here.)

Note that the maximum values of T 2
D,1 and T 2

D,5 are the same and the largest values,

whereas the maximum of T 2
D,3 is the smallest. Also note the symmetry about the

center position, i = 3. A similar pattern holds for all cases in which p < m − 1,

where the maximum values are greatest for values of i = 1 and m, and smallest in

the middle.

As shown in Theorem 2 of Williams et al. (2004), an interesting phenomenon

occurs for the case of p = m− 1. For this case all of the T 2
D,i statistics, i = 1, . . . ,m,

are necessarily equal to their respective maximum values as given by Equation (7),
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regardless of the HDS used. This is a degenerate case since each T 2
D,i statistic becomes

deterministic and equals a constant, as given in Equation (7).

We conjecture that the T 2
D,i statistics divided by the true maximum value have an

approximate distribution given by

T 2
D,i

1

MV (m, i)
∼ BETA(β(m, p, i), γ(m, p, i)), i = 1, . . . , m, (8)

where β(m, p, i) and γ(m, p, i) are functions of m, p, and i. To obtain the approximate

distributions, we generated 100,000 independent T 2
D,i statistics for each combination

of p = 2, . . . , 10, m = 20, 25, 30, . . . , 70, and i = 1, . . . ,m, assuming, without loss

of generality, that xi ∼ Np(0, I). We make this assumption based on the fact that

the T 2
D,i values are invariant to a full-rank linear transformation on the observation

vectors, as shown by Sullivan and Woodall (1996). For fixed m and p we then found

the maximum likelihood estimates for β(m, p, i) and γ(m, p, i) for each set of 100,000

T 2
D,i statistics, i = 1, . . . , m. Then, using nonlinear regression we fit a parametric

function to estimate β(m, p, i) and γ(m, p, i) as a function of m, p, and i. The func-

tions were chosen based on obvious patterns in the estimated β(m, p, i) and γ(m, p, i)

parameters. In order to adequately capture the form of β(m, p, i) and γ(m, p, i) as a

function of m, p, and i, we fit the functions in the following way:

1. Fit the estimates of β(m, p, i) and γ(m, p, i) as a function of one of m, p, or i

for every combination of the other two.

2. Fit the estimated functional parameters from Step 1 as a function of one of the

remaining parameters, holding the third fixed.

3. Finally, fit the estimated functional parameters from Step 2 as a function of the

third.

Combining the results of steps 1 – 3, the estimated function for β(m, p, i) is

β(m, p, i) = I{i=1,m}

(
p

2
− 1

a11(m− b11)

)
+ I{i=2,...,m−1} (a12p + b12) , (9)

and the estimated function for γ(m, p, i) is given by

γ(m, p, i) = I{i=1,m}a21 + I{i=2,...,m−1}

[
a22

(
i− m + 1

2

)2

+ b22

]
, (10)
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where

I{i=1,m} =





1 if i = 1 or i = m

0 otherwise

I{i=2,...,m−1} =





1 if 2 ≤ i ≤ m− 1

0 otherwise

a11 = 6.356e−0.825p + 0.06

b11 = 0.5564p + 0.9723

a12 = 0.54− 0.25e−0.25(m−15)

b12 = −0.085 + 0.2e−0.2(m−22)

a21 = (−0.5m + 2)p +
1

3
(m + 3)(m− 5)

a22 = 0.99 + 0.38e0.38(p−13.5) − 1

0.25e−0.25(p−10)
(
m− 11 + (p−7)2

3

)

b22 = (0.07e−0.07(m−42) − 1.95)p + 0.0833m2

As an example, for the case where m = 40, p = 5, and i = 20, β(40, 5, 20) = 2.618 and

γ(40, 5, 20) = 124.174. The shape parameters for i = 1 are β(40, 5, 1) = 2.330 and

γ(40, 5, 1) = 411.667. Also note that β(m, p, i) = β(m, p,m− i + 1) and γ(m, p, i) =

γ(m, p, m− i + 1), demonstrating the symmetry about the center position(s).

One theoretical justification for the form of β(m, p, i) and γ(m, p, i) is the resem-

blance to the distribution of T 2
1,i given in Equation (2). For example, for large m

β(m, p, i) is approximately p
2
, which is the value of the first shape parameter in Equa-

tion (2). The form of γ(m, p, i) is less intuitive since both γ(m, p, i) and the second

shape parameter given in Equation (2) are functions of m and p. However, note the

similarity of the form of the maximum value of T 2
D,i given in Equation (7) and the

form of γ(m, p, i).

The functions for β(m, p, i) and γ(m, p, i) have two cases, one case where i = 1 or

m and the other case where i = 2, . . . , m−1. These cases are treated separately since

the distributions of the first and last T 2
D,i statistics can be quite different from those

of the other T 2
D,i statistics. One theoretical justification for this difference can be
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found by examining the definitions of SD and the T 2
D,i statistics, given in Equations

(3) and (4), respectively. In the calculation of SD, observation vectors x1 and xm

appear only once in the successive differences vi whereas all other observation vectors

appear twice. Hence it is intuitive that the distributions for i = 1 and m should be

different from the others. However, the distributions asymptotically approach χ2(p),

as expected.

Next, we illustrate how well the approximations fit by showing some example Q-Q

plots of the (simulated) actual distribution and a suggested approximating distrib-

ution. We compare the approximations of Equations (8), (5), and (6) by showing

the quantiles from the left hand side of an equation on the vertical axis against the

corresponding quantiles from the respective approximation (from the right hand side

of the equation) on the horizontal axis. These Q-Q plots are shown in Figure 3,

where our proposed approximation from Equation (8) is presented in the left column

of plots, the Sullivan and Woodall (1996) approximation (SW), from Equation (5),

is in the middle column of plots, and the Mason and Young (2002) approximation

(MY), from Equation (6), is in the right column. In these plots, the T 2 statistics are

scaled by different factors, as given in Equations (8), (5), and (6).

We show these plots for p = 4 and for m = 30 and 60 observations. The distribu-

tions of the first and last chart statistics are the same, and their common distribution

(scaled) is the focus of the first and third rows of the plots. The distribution for

the middle chart statistic (scaled) is shown in the second and fourth rows. The first

column gives an informal, visual impression of the close relationship of our proposed

approximation with the actual distribution, while there is a greater deviation from

the theoretical quantiles with the other proposed approximations. There are simi-

lar patterns for p = 8 and m = 30 and 60 observations, and for other cases with

small numbers of observations, but these are not shown in the interest of brevity. We

generated 10,000 simulated statistics for each plot.

(Insert Figure 3 about here.)

We note that there is a clear improvement in the goodness-of-fit for the proposed

10



approximate distributions of Equation (8) for each case.

Performance Comparison

Control Limits

Once the distribution of T 2
D,i is approximated, an approximate upper control limit

corresponding to an overall probability of a false alarm may be calculated. Hence,

we need the joint distribution of the T 2
D,i statistics. However, the T 2

D,i values are

correlated, since each statistic is based on the same x̄ and SD, thus making the joint

distribution of the T 2
D,i values difficult to obtain. As an alternative, Mahmoud and

Woodall (2004) suggested using an approximate joint distribution assuming that the

T 2
D,i statistics are independent. In their simulation study, Mahmoud and Woodall

(2004) found that UCLs based on this approach performed well, and we follow their

suggestion here. Let α be the probability of a false alarm for any individual T 2
D,i

statistic. Then the approximate overall probability of a false alarm for a sample of m

independent statistics is αoverall = 1− (1−α)m. Thus, for a given overall probability

of a false alarm, we use

α = 1− (1− αoverall)
1/m (11)

in calculation of UCLs.

To obtain the UCL that achieves the false alarm rate α, Sullivan and Woodall

(1996) recommended

UCLSW =
(m− 1)2

m
BETA1−α,p/2,(f−p−1)/2, (12)

where BETA1−α,p/2,(f−p−1)/2 is the 1 − α quantile of a beta distribution with shape

parameters p
2

and f−p−1
2

. Mason and Young (2002) suggested the UCL defined by

UCLMY =
(f − 1)2

f
BETA1−α,p/2,(f−p−1)/2. (13)

When use of the asymptotic distribution of T 2
D,i is justified, then the UCL is given by

UCLχ2 = χ2
1−α,p, (14)

11



where χ2
1−α,p is the 1− α quantile of a χ2(p) distribution.

Because the distribution of T 2
D,i varies with i, one UCL is not appropriate for all

the T 2
D,i statistics. Instead a set of m UCL values is needed, one UCL for each i. We

call the set of UCL values the UCL vector, with element i given by

UCLi = MV (m, i)BETA1−α,β(m,p,i),γ(m,p,i), i = 1, . . . , m, (15)

and UCLvec = (UCL1, UCL2, . . . , UCLm). The T 2 chart based on the UCL vector

will signal whenever T 2
D,i > UCLi for any i = 1, . . . , m.

Simulation Study

To compare the performance of the alternative control limits given by UCLSW ,

UCLMY , UCLχ2 , and UCLvec, we simulated 100,000 Phase I charts for each combi-

nation of m = 20, 25, 30, . . . , 70 and p = 2, 3, . . . , 10, recorded the number of signals,

and estimated the true false alarm rate as the number of signals divided by 100,000.

A Phase I chart can be simulated by generating m i.i.d. multivariate normal ran-

dom variables according to Equation (1) and applying Equation (4). Then each T 2
D,i

statistic is compared to the UCL. If one or more of the T 2
D,i values exceed the UCL,

then the chart produces a signal. The nominal (or target) overall probability of false

alarm is set to be αoverall = 0.05. The large number of simulations provides for an

approximate standard error of
√

(0.05)(1−0.05)
100,000

= 0.00068, so that the estimates are

accurate to approximately ±3(0.00068) = ±0.002. In Figure 4 we plot the estimated

false alarm rates for the four methods for p = 2, 3, 4, and 5, and in Figure 5 we plot

the estimates for p = 6, 7, 8, and 9.

(Insert Figures 4 and 5 about here.)

A reference line is plotted at αoverall = 0.05. It is clear from Figures 4 and 5 that

the false alarm rates produced by UCLMY are larger than the nominal value, or

higher than intended, for small samples, but the false alarm rate is asymptotically

more accurate for large m. The false alarm rates produced by UCLSW are greater

than 0.05 for small m and less than 0.05 for large m. Further, as m gets larger, the
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false alarm rate gets smaller. Thus, even for large values of m, the false alarm rate

produced by UCLSW will be smaller than expected. The UCLχ2 performs well for

sufficiently large m, with accuracy generally decreasing as m decreases or p increases.

For large p and small m, the UCLvec produces false alarm rates much closer to the

nominal level than does UCLχ2 . In a separate simulation study (not reported here)

we found similar results using αoverall = 0.01.

Example

To illustrate use of the four methods, we analyzed the data in Quesenberry (2001).

Thirty items were sampled with eleven quality characteristics measured on each item.

For the purposes of this example, we consider only the first nine quality characteristics.

To calculate UCLvec, we calculate β(m, p, i) and γ(m, p, i) in Equations (9) and (10)

for each observation i = 1, . . . , m in this dataset. For the first observation, we obtain

β(30, 9, 1) = 3.776 and γ(30, 9, 1) = 158. We choose an overall probability of a

false alarm αoverall = 0.05, which yields α = 0.0017 by Equation (11). Further the

maximum value of the T 2
D,1 statistic is given by MV (30, 1) = 551.322 in Equation

(7). Then, by Equation (15)

UCL1 = MV (30, 1)BETA1−α,β(30,11,1),γ(30,11,1) = 39.948.

Similarly, β(30, 9, 2) = 4.762, γ(30, 9, 2) = 223.911, MV (30, 2) = 497.189, producing

UCL2 = 29.228, and so forth. The UCLvec values and the associated T 2
D,i values are

given in Table 2.

(Insert Table 2 about here.)

By Equations (12) – (14), we obtain UCLSW = 24.828, UCLMY = 15.596, and

UCLχ2 = 26.474. In Figure 6 we plot the T 2
D,i statistics with the four UCL lines.

(Insert Figure 6 about here.)

Observations 2, 7, 13, and 30 exceed the UCLMY control limit, and observation

2 exceeds the UCLSW control limit. No observations exceed the UCLχ2 or UCLvec
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control limits. Since these calculations were based on observational rather than sim-

ulated data, the true joint distribution of the observations is necessarily unknown.

Discussion

There has been no previous work on the number of samples required for the

T 2
D,i statistics to approximately follow a χ2(p) distribution. However, there have

been a number of papers addressing the issue of the number of samples with respect

to the use of T 2
1,i statistics. For example, Chou, Mason, and Young (2001) made

recommendations for the number of samples required for a Phase II analysis with

individual observations following a non-normal multivariate distribution. Lowry and

Montgomery (1995) considered both Phase I and II, analyzing both individual and

subgrouped observations. They used a relative error criteria in comparing the actual

UCL and the UCL obtained from assuming that T 2
1,i follows a χ2(p) distribution

to determine the minimum number of samples. Nedumaran and Pignatiello (1999)

studied the sample size requirements for using χ2(p) for a Phase I analysis with

subgrouped observations. From these studies, there is no clear consensus on the

minimum number of samples.

In the calculation of the T 2
1,i statistics, we must estimate p parameters in the mean

vector and p(p+1)
2

variance and covariance parameters, for a total of p + p (p+1)
2

para-

meters, as noted by Mason and Young (2002, pp. 40-50). However, it is interesting to

note that even with a sample size m < p+ p (p+1)
2

, the distribution of the T 2
1,i statistics

is still the beta distribution as given in Equation (2). Hence, even for small sample

sizes, one can still find an appropriate UCL for a Phase I analysis as long as m ≥ p.

However, if m < p then S1 is a singular matrix, and S−1
1 does not exist.

For the T 2 chart based on T 2
D,i statistics, one criteria for specifying the minimum

sample size for the asymptotic approximation to be accurate is a comparison between

the desired overall probability of a false alarm and the actual probability for a certain

sample size. In our simulation study, we estimated the actual probability of a false

alarm based on UCLχ2 for p = 2, . . . , 9 and m = 20 to m = 100. Figures 4 and 5

show that when the number of samples is at least twice the number of parameters
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estimated
(
p + p (p+1)

2

)
, then the UCLχ2 false alarm probability is nearly the nominal

value. Hence, we recommend the use of UCLχ2 when m > 2p + p(p + 1) = p2 + 3p

and UCLvec for smaller samples. In a limited simulation study (not reported here)

we found that UCLχ2 produces a false alarm rate close to the nominal false alarm

rate for a T 2 chart based on T 2
D,i statistics when m > p2 + 3p, regardless the value

of p. Note, however, that in order to use UCLχ2 a large m is required. Similarly, for

the case of the T 2
1,i statistic, Hawkins (1974) noted that a very large m is required for

use of the χ2(p) distribution.

In our determination of the improved approximation given in Equation (8), we

limited our scope to p < 10. Our proposed approximation is accurate for values

of p < 10, but for values of p ≥ 10, the accuracy of our approximation has not

been thoroughly studied and remains a topic for future research. A summary of our

recommended UCL for a T 2 chart is given in Table 3.

(Insert Table 3 about here.)

As is the case with the T 2
1,i statistics, the T 2

D,i statistics, i = 1, . . . ,m, are corre-

lated. The correlations between the T 2
D,i statistics, however, are much more compli-

cated than the correlations between the T 2
1,i statistics. Where the correlation of the

T 2
1,i statistics is known to be −1

m−1
, the correlation of the T 2

D,i statistics depends on

m, p, and i. Yet, this correlation diminishes in magnitude as m increases relative to

p. The importance of the correlation lies in its effect on control chart performance.

Figure 3 demonstrates that our method of finding the UCL for the T 2 chart based

on the T 2
D,i statistic is an improvement over the methods suggested by Sullivan and

Woodall (1996) and Mason and Young (2002), and performs better than the chi-

square distribution when m is small. Although we motivated the results by ignoring

the correlation, our simulations did include the actual correlations. The intermediate

properties, such as the α for a single statistic would therefore deviate with small m,

but our final result is accurate.

In addition to our proposed approximate distribution, exploring other approximate

distributions of the T 2
D,i statistics is a topic for further research. A referee suggested
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that a reasonable approximate distribution is given by

p

E(T 2
D,i)

T 2
D,i ∼ χ2(p), i = 1, . . . , m,

where E(T 2
D,i) is the expected value of T 2

D,i. In implementing this approximation one

would have the challenge of deriving the form of E(T 2
D,i), which is a function of m, p,

and i. Alternatively, a simulation based approach for computing E(T 2
D,i) could also

be employed when an analytic solution is infeasible.

Conclusion

We have considered how to accurately determine the upper control limit for a T 2

control chart based on successive differences of multivariate individual observations.

We have shown that previously proposed approximations by Sullivan and Woodall

(1996) and Mason and Young (2002) give an actual false alarm probability different

from what is intended when the sample size is small.

We give an analytical result for the maximum value of the T 2 chart statistics when

the successive differences estimator is used, showing that the maximum value is not

the same for all observations. We give a formula for how the maximum value depends

on the observation number. We divide the T 2 chart statistic by its maximum value

to produce a statistic whose distribution is approximately beta, with parameters that

we approximate based on simulations.

We then studied the chart performance with our proposed control limit, which

varies with the position of the observation. We show that with our proposed limit the

actual false alarm probability is much closer to the specified value with small samples.
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Table 1: The T 2
D,i statistics scaled according to Sullivan and Woodall (1996), Mason

and Young (2002), and Equation (7) for a data set.

i 1 2 3 4 5
m

(m− 1)2
T 2

D,i 2.572 1.499 0.016 1.017 2.294

f

(f − 1)2
T 2

D,i 6.578 3.828 0.041 2.599 5.860

1

MV (m, i)
T 2

D,i 0.857 0.999 0.016 0.678 0.765



Table 2: The T 2
D,i statistics and UCLvec values based on the Quesenberry (2001)

data.
i T 2

D,i UCLvec i T 2
D,i UCLvec i T 2

D,i UCLvec

1 6.418 39.948 11 7.220 29.232 21 12.734 29.235
2 26.400 29.228 12 12.538 29.229 22 6.390 29.236
3 7.880 29.230 13 19.228 29.225 23 3.183 29.236
4 7.498 29.232 14 9.820 29.222 24 6.755 29.236
5 12.233 29.233 15 9.780 29.219 25 10.585 29.235
6 5.656 29.235 16 15.377 29.219 26 13.100 29.233
7 21.705 29.236 17 13.979 29.222 27 4.395 29.232
8 4.124 29.236 18 6.375 29.225 28 7.008 29.230
9 6.578 29.236 19 5.280 29.229 29 12.765 29.228

10 6.835 29.235 20 15.234 29.232 30 20.193 39.948



Table 3: Recommended UCL for the T 2 chart based on the T 2
D,i statistic.

p < 10 p ≥ 10
m > p2 + 3p UCLχ2 UCLχ2

m ≤ p2 + 3p UCLvec No recommendation



Figure 1: Q-Q plots of empirical quantiles of the T 2
D,i statistic (i = 1 and 2) versus

a χ2(p) distribution. The uppermost curve is for T 2
D,1 and the lowermost curve is for

T 2
D,2.
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Figure 2: Boxplots of T 2
D,i for p = 2 and m = 5.
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Figure 3: Q-Q plots of empirical versus the theoretical quantiles. The first column is
for the proposed approximation, the second column is for the Sullivan and Woodall
(1996) approximation, and the last column is for the Mason and Young (2002) ap-
proximation.
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Figure 4: Overall Probability of a False Alarm for p = 2, 3, 4, 5. The intended false
alarm rate is 0.05. Key: Proposed approximation (solid), S&W (dashed), M&Y
(dotted), and χ2(p) (dash-dotted).
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Figure 5: Overall Probability of a False Alarm for p = 6, 7, 8, 9. The intended false
alarm rate is 0.05. Key: Proposed approximation (solid), S&W (dashed), M&Y
(dotted), and χ2(p) (dash-dotted).
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Figure 6: T 2
D,i statistics and UCL values for the Quesenberry (2001) data. Key:

Proposed approximation (solid), S&W (dashed), M&Y (dotted), and χ2(p) (dash-
dotted).
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